
Introduction to JML
a notation for formally specifying Java

programs

Erik Poll

University of Nijmegen

Erik Poll - FM – p.1/30

Overview of this talk

• What are formal methods anyway?

• the JML specification language

• two tools for JML:
1. extended static checking with escjava,

(to be used for your applet)
2. runtime assertion checking with jmlc/jmlrac,

(to be used for your terminal application)

Erik Poll - FM – p.2/30

What are formal methods
anyway?

Erik Poll - FM – p.3/30

Formal methods for civil engineers

Suppose we build a bridge

How do we know bridge won’t collapse ?

Erik Poll - FM – p.4/30

Formal methods for civil engineers

reality (abstract) model

α
F1

F2M

of which properties

M ∗ cos(α) ∗ F2

l ∗
√

h ∗ . . .
> Mmax

can be specified and verified

This way we can be certain the bridge won’t collapse
(modulo modeling errors and abstraction)

Erik Poll - FM – p.5/30

Formal methods for software engineers

Suppose we write software for the bridge, to control
opening/closing of the bridge, traffic lights, barriers, etc.

public class BridgeController{

public void openBridge()

{...}

public void closeBridge()

{...}

public void setTrafficlight(Col c)

{...}

}

How can we know that cars will never drive on open bridge?

Erik Poll - FM – p.6/30

Formal methods for software engineers

reality

public class BridgeController{

public void openBridge()

{...}

public void closeBridge()

{...}

public void setTrafficlight(Col c)

{...}

}

Erik Poll - FM – p.7/30

Formal methods for software engineers

reality
Model?
(Do we need one?)
Specifying properties?
Verifying properties?

public class BridgeController{

public void openBridge()

{...}

public void closeBridge()

{...}

public void setTrafficlight(Col c)

{...}

}

How can we specify wanted (unwanted) behaviour and
ensure that this will always (never) happen?

Erik Poll - FM – p.8/30

Formal Methods

Computer scientists have invented a large variety of formal
languages to model software and to specify properties
about these models, with techniques (logics) to verify these
properties.

• finite state machines (FSM) aka automata, CSP,
process algebra, Z, B, guarded command language,
Message Sequence Charts, . . . , Java, . . .

• predicate logic, Hoare logic, temporal logic, . . .

• model checking, theorem proving, . . .

Erik Poll - FM – p.9/30

Formal vs Informal Methods

Why formal as opposed to informal methods ?

(Eg. why not specifications in natural language and
reasoning by common-sense?)

• Precision: formal methods leave no room for ambuity.

• Certainty: formal methods can provide more certainty
(again, modulo modeling errors and abstraction).

• Automation: formal methods can be supported by
tools.

Erik Poll - FM – p.10/30

Possible applications of FM

Model the protocol between smartcard and terminal in
some security protocol language
1. terminal → smartcard : nonce

2. smartcard → terminal : {nonce}K

3. terminal → smartcard : ok

4. smartcard → terminal : balance

5. terminal → smartcard : debitamount

6. smartcard → terminal : done

and prove this achieves required security objectives (eg.
terminal authenticates smartcard) under certain
assumptions (eg. only terminal and smartcard know key
K).

(Remaining question: does our Java code actually
implement the protocol as modeled above?)

Erik Poll - FM – p.11/30

JML
(Java Modeling Language)

Erik Poll - FM – p.12/30

JML by Gary Leavens et al.

Formal specification language for Java

• to specify behaviour of Java classes

• to record design/implementation decisions

by adding assertions to Java source code, eg

• preconditions

• postconditions

• class invariants

as in Eiffel (Design-by-Contract), but more expressive

Goal: JML should be easy to use for any Java programmer.

Erik Poll - FM – p.13/30

JML by Gary Leavens et al.

Formal specification language for Java

• to specify behaviour of Java classes

• to record design/implementation decisions

by adding assertions to Java source code, eg

• preconditions

• postconditions

• class invariants

as in Eiffel (Design-by-Contract), but more expressive

Goal: JML should be easy to use for any Java programmer.

Erik Poll - FM – p.13/30

JML

To make JML easy to use:

• Properties are specified as Java boolean expressions,
extended with a few operators.

• JML assertions are added as comments in .java file,
between /*@ . . .@*/, or after //@.

Using JML we specify and check properties of the Java
program itself, not of some model of our Java program. Ie.
the Java program itself is our formal model.

Erik Poll - FM – p.14/30

Pre- and postconditions

Pre- and post-conditions for methods, eg.

/*@ requires amount >= 0;

ensures balance == \old(balance)-amount &&

\result == balance;

@*/

public int debit(int amount) {

...

}

Here \old(balance) refers to the value of balance
before execution of the method.

Erik Poll - FM – p.15/30

Pre- and postconditions

JML specs can be as strong or as weak as you want.

/*@ requires amount >= 0;

ensures true;

@*/

public int debit(int amount) {

...

}

This default postcondition “ensures true” can be
omitted.

Erik Poll - FM – p.16/30

Design-by-Contract

Pre- and postconditions define a contract between a class
and its clients:

• Client must ensure precondition and may assume
postcondition

• Method may assume precondition and must ensure
postcondition

Eg, in the example spec for debit, it is the obligation of
the client to ensure that amount is positive.
The requires clause makes this explicit.

Erik Poll - FM – p.17/30

Exceptional postconditions

exsures clauses specify when exceptions may be thrown

/*@ requires amount >= 0;

ensures true;

exsures (ISOException e)

amount > balance &&

balance == \old(balance) &&

e.getReason()==AMOUNT_TOO_BIG;

@*/

public int debit(int amount) throws ISOException{

...

}

Erik Poll - FM – p.18/30

Exceptional postconditions

Again, specs can be as strong or weak as you want.

/*@ requires amount >= 0;

ensures true;

exsures (ISOException) true;

@*/

public int debit(int amount) throws ISOException

NB this specifies that an ISOException is the only
exception that can be thrown by debit

Erik Poll - FM – p.19/30

requires vs. exsures

There is often a trade-off between precondition and
exceptional postcondition

/*@ requires amount >= 0;

ensures true;

exsures (ISOException e) true;

@*/

public int debit(int amount) throws ISOException{

...

}

Erik Poll - FM – p.20/30

requires vs. exsures

There is often a trade-off between precondition and
exceptional postcondition

/*@ requires amount >= 0 && amount <= balance;

ensures true;

exsures (ISOException e) false;

@*/

public int debit(int amount) throws ISOException{

...

}

Maybe “throws ISOException” should now be omitted.

Erik Poll - FM – p.21/30

Invariants

Invariants (aka class invariants) are properties that must be
maintained by all methods, eg

public class Wallet {

public static final short MAX_BAL = 1000;

private short balance;

/*@ invariant 0 <= balance

&& balance <= MAX_BAL;

@*/

...

Erik Poll - FM – p.22/30

Invariants

Invariants (aka class invariants) are properties that must be
maintained by all methods, eg

public class Wallet {

public static final short MAX_BAL = 1000;

private short balance;

/*@ invariant 0 <= balance

&& balance <= MAX_BAL;

@*/

...

Invariants must also be preserved if a method throws an exception!

Erik Poll - FM – p.23/30

Example invariants

private final Object[] objs;

/*@ invariant

objs != null

&&

objs.length == CURRENT_OBJS_SIZE

&&

(\forall int i; 0 <= i && i <= CURRENT_OBJS_SIZE

; objs[i] != null);

@*/

Invariants document design decisions.
Making them explicit helps in understanding the code.

Erik Poll - FM – p.24/30

assert clauses

An assert clause specifies a property that should hold at
some point in the code, eg.

private File getFile (...) {

try { ...

} catch (ClassCastException e) { ...

}

//@ assert false;

return null;

}

Erik Poll - FM – p.25/30

That’s all, folks!

These examples cover most of what you
need to know to start using JML!

There are many more features in JML, but these depend on
which tool for JML you use.

Erik Poll - FM – p.26/30

Benefits of JML

• JML specifications provide explicit documentation of
contracts and invariants

Writing JML specs for code, you make explicit
assumptions and considerations that have
gone into the design of code

• Such JML specifications make it easier to understand
code

and should help convincing yourself and
others that nothing can go wrong.

• Such JML specifications can be used by tools . . .

Erik Poll - FM – p.27/30

Benefits of JML

• JML specifications provide explicit documentation of
contracts and invariants

Writing JML specs for code, you make explicit
assumptions and considerations that have
gone into the design of code

• Such JML specifications make it easier to understand
code

and should help convincing yourself and
others that nothing can go wrong.

• Such JML specifications can be used by tools . . .

Erik Poll - FM – p.27/30

Benefits of JML

• JML specifications provide explicit documentation of
contracts and invariants

Writing JML specs for code, you make explicit
assumptions and considerations that have
gone into the design of code

• Such JML specifications make it easier to understand
code

and should help convincing yourself and
others that nothing can go wrong.

• Such JML specifications can be used by tools . . .

Erik Poll - FM – p.27/30

Benefits of JML

• JML specifications provide explicit documentation of
contracts and invariants

Writing JML specs for code, you make explicit
assumptions and considerations that have
gone into the design of code

• Such JML specifications make it easier to understand
code

and should help convincing yourself and
others that nothing can go wrong.

• Such JML specifications can be used by tools . . .

Erik Poll - FM – p.27/30

Benefits of JML

• JML specifications provide explicit documentation of
contracts and invariants

Writing JML specs for code, you make explicit
assumptions and considerations that have
gone into the design of code

• Such JML specifications make it easier to understand
code

and should help convincing yourself and
others that nothing can go wrong.

• Such JML specifications can be used by tools . . .

Erik Poll - FM – p.27/30

Tools for JML

• Runtime assertion checking with jmlc/jmlrac.

Using jmlc and jmlrac (instead of javac and java)
performs checks for all JML assertions at runtime:

any assertion violation results in a special exception.

To be used for your Java terminal applications

• extended static checking with escjava

escjava proves JML assertions as compile time

To be used for your Java Card applets

Erik Poll - FM – p.28/30

Tools for JML

• Runtime assertion checking with jmlc/jmlrac.

Using jmlc and jmlrac (instead of javac and java)
performs checks for all JML assertions at runtime:

any assertion violation results in a special exception.

To be used for your Java terminal applications

• extended static checking with escjava

escjava proves JML assertions as compile time

To be used for your Java Card applets

Erik Poll - FM – p.28/30

Tools for JML
Runtime assertion checking

• low cost & effort

• easy to do as part of normal testing

Extended checking with ESC/Java

• higher cost & effort

• possible for JavaCard-sized programs

• higher assurance: independent of any test suite

• checking a spec with ESC/Java forces you to specify
all the invariants and API contracts that it relies on

Erik Poll - FM – p.29/30

Tools for JML
Runtime assertion checking

• low cost & effort

• easy to do as part of normal testing

Extended checking with ESC/Java

• higher cost & effort

• possible for JavaCard-sized programs

• higher assurance: independent of any test suite

• checking a spec with ESC/Java forces you to specify
all the invariants and API contracts that it relies on

Erik Poll - FM – p.29/30

What do we want to specify?

Specification is difficult!

• Begin by describing the protocol used for every kind
of terminal/smartcard interaction in your application
(informally). You should be able to relate the state of
the terminal/applet to a state in this protocol; the
terminal/applet essentially implement a finite state
machine.

• For all data fields, specify ‘sanity’ conditions as
invariants.

• For all methods, specify assumptions it makes on
parameters and on fields, as preconditions.

• Specifying what you don’t want to happen is often
easier than specifying what you do want to happen:
esp., you don’t want any Nullpointer- or
ArrayIndexOutOfBoundsExceptions.

Erik Poll - FM – p.30/30

	Overview of this talk
	{Large
ed What are formal methods anyway?}
	Formal methods for civil engineers
	Formal methods for civil engineers
	$!!!!!!!!$Formal methods for software engineers
	$!!!!!!!!$Formal methods for software engineers
	$!!!!!!!!$Formal methods for software engineers
	Formal Methods
	Formal vs Informal Methods
	Possible applications of FM
	{Large
ed JML \[1ex] (Java Modeling Language)}
	JML {�ootnotesize {�lack by Gary Leavens et al.}}
	JML
	Pre- and postconditions
	Pre- and postconditions
	Design-by-Contract
	Exceptional postconditions
	Exceptional postconditions
	requires vs. exsures
	requires vs. exsures
	Invariants
	Invariants
	Example invariants
	assert clauses
	That's all, folks!
	Benefits of JML
	Tools for JML
	Tools for JML
	What do we want to specify?

