
ESC/Java 2
Extended Static Checking for Java

Joe Kiniry

University of Nijmegen

Joe Kiniry - ESC/Java2 – p.1/10



What is Extended Static Checking?

Take a nicely-constructed program that (perhaps) has a
number of well-thought out assertions scattered
throughout.

Joe Kiniry - ESC/Java2 – p.2/10



What is Extended Static Checking?

Take a nicely-constructed program that (perhaps) has a
number of well-thought out assertions scattered
throughout. Now, imagine that you had a tool capable of:

Joe Kiniry - ESC/Java2 – p.2/10



What is Extended Static Checking?

Take a nicely-constructed program that (perhaps) has a
number of well-thought out assertions scattered
throughout. Now, imagine that you had a tool capable of:

• automatically checking that nearly all the assertions in
the program are always true

Joe Kiniry - ESC/Java2 – p.2/10



What is Extended Static Checking?

Take a nicely-constructed program that (perhaps) has a
number of well-thought out assertions scattered
throughout. Now, imagine that you had a tool capable of:

• automatically checking that nearly all the assertions in
the program are always true

• performing this analysis statically . That is, it works
just like your compiler does and runs without any user
or test input whatsoever .

Joe Kiniry - ESC/Java2 – p.2/10



What is Extended Static Checking?

Take a nicely-constructed program that (perhaps) has a
number of well-thought out assertions scattered
throughout. Now, imagine that you had a tool capable of:

• automatically checking that nearly all the assertions in
the program are always true

• performing this analysis statically . That is, it works
just like your compiler does and runs without any user
or test input whatsoever .

• reasoning about non-trivial properties of the system
beyond, e.g., whether the code type-checks or not. In
other words, an extended (beyond type-correctness)
set of properties are checked.

Joe Kiniry - ESC/Java2 – p.2/10



What is Extended Static Checking?

Take a nicely-constructed program that (perhaps) has a
number of well-thought out assertions scattered
throughout. Now, imagine that you had a tool capable of:

• automatically checking that nearly all the assertions in
the program are always true

• performing this analysis statically . That is, it works
just like your compiler does and runs without any user
or test input whatsoever .

• reasoning about non-trivial properties of the system
beyond, e.g., whether the code type-checks or not. In
other words, an extended (beyond type-correctness)
set of properties are checked.

Such a tool is called an extended static checker .

Joe Kiniry - ESC/Java2 – p.2/10



What is Extended Static Checking?

Three main Extended Static Checkers have been developed.

Joe Kiniry - ESC/Java2 – p.3/10



What is Extended Static Checking?

Three main Extended Static Checkers have been developed.

• The original research and tool were accomplished by
Rustan Leino et. al at the DEC SRC. The two tools they
developed were ESC/Modula-III and SRC ESC/Java
(version 1).

Joe Kiniry - ESC/Java2 – p.3/10



What is Extended Static Checking?

Three main Extended Static Checkers have been developed.

• The original research and tool were accomplished by
Rustan Leino et. al at the DEC SRC. The two tools they
developed were ESC/Modula-III and SRC ESC/Java
(version 1).

• ESC/Java originally used its own, JML-like annotation
language.

Joe Kiniry - ESC/Java2 – p.3/10



What is Extended Static Checking?

Three main Extended Static Checkers have been developed.

• The original research and tool were accomplished by
Rustan Leino et. al at the DEC SRC. The two tools they
developed were ESC/Modula-III and SRC ESC/Java
(version 1).

• ESC/Java originally used its own, JML-like annotation
language.

• Last year, H.P. decided to Open Source SRC ESC/Java,
so ESC/Java2 was born.

Joe Kiniry - ESC/Java2 – p.3/10



What is Extended Static Checking?

Three main Extended Static Checkers have been developed.

• The original research and tool were accomplished by
Rustan Leino et. al at the DEC SRC. The two tools they
developed were ESC/Modula-III and SRC ESC/Java
(version 1).

• ESC/Java originally used its own, JML-like annotation
language.

• Last year, H.P. decided to Open Source SRC ESC/Java,
so ESC/Java2 was born.

• ESC/Java2 is the work of David Cok and Joe Kiniry
(that’s me!).

Joe Kiniry - ESC/Java2 – p.3/10



What is Extended Static Checking?

Three main Extended Static Checkers have been developed.

• The original research and tool were accomplished by
Rustan Leino et. al at the DEC SRC. The two tools they
developed were ESC/Modula-III and SRC ESC/Java
(version 1).

• ESC/Java originally used its own, JML-like annotation
language.

• Last year, H.P. decided to Open Source SRC ESC/Java,
so ESC/Java2 was born.

• ESC/Java2 is the work of David Cok and Joe Kiniry
(that’s me!).

• ESC/Java2 is SRC ESC/Java++. It understands all of
JML, checks more properties , it runs on more
platforms , and is more robust .

Joe Kiniry - ESC/Java2 – p.3/10



ESC/Java

• In general, an Extended Static Checker tries to prove
the correctness of specifications, at compile-time , fully
automatically , but . . .

Joe Kiniry - ESC/Java2 – p.4/10



ESC/Java

• In general, an Extended Static Checker tries to prove
the correctness of specifications, at compile-time , fully
automatically , but . . .

• ESC/Java is not sound and is not complete. That is, it
can sometimes reject a correct spec , and at other
times accept an incorrect spec .

Joe Kiniry - ESC/Java2 – p.4/10



ESC/Java

• In general, an Extended Static Checker tries to prove
the correctness of specifications, at compile-time , fully
automatically , but . . .

• ESC/Java is not sound and is not complete. That is, it
can sometimes reject a correct spec , and at other
times accept an incorrect spec .

• However, an ESC/Java finds lots of (potential) bugs
quickly , and

Joe Kiniry - ESC/Java2 – p.4/10



ESC/Java

• In general, an Extended Static Checker tries to prove
the correctness of specifications, at compile-time , fully
automatically , but . . .

• ESC/Java is not sound and is not complete. That is, it
can sometimes reject a correct spec , and at other
times accept an incorrect spec .

• However, an ESC/Java finds lots of (potential) bugs
quickly , and

• ESC/Java is good at proving the absence of runtime
exceptions like (e.g., NullPointer-,
ArrayIndexOutOfBounds-, ClassCast-) , and

Joe Kiniry - ESC/Java2 – p.4/10



ESC/Java

• In general, an Extended Static Checker tries to prove
the correctness of specifications, at compile-time , fully
automatically , but . . .

• ESC/Java is not sound and is not complete. That is, it
can sometimes reject a correct spec , and at other
times accept an incorrect spec .

• However, an ESC/Java finds lots of (potential) bugs
quickly , and

• ESC/Java is good at proving the absence of runtime
exceptions like (e.g., NullPointer-,
ArrayIndexOutOfBounds-, ClassCast-) , and

• ESC/Java can verify a large class of fairly complex
system properties.

Joe Kiniry - ESC/Java2 – p.4/10



ESC/Java vs Runtime Checking

There are important differences:

• ESC/Java checks specs at compile-time , while jmlc
checks specs at run-time

Joe Kiniry - ESC/Java2 – p.5/10



ESC/Java vs Runtime Checking

There are important differences:

• ESC/Java checks specs at compile-time , while jmlc
checks specs at run-time

• ESC/Java proves correctness of specs, jmlc, jmlrac,
and jmlunit only test correctness of specs.

Joe Kiniry - ESC/Java2 – p.5/10



ESC/Java vs Runtime Checking

There are important differences:

• ESC/Java checks specs at compile-time , while jmlc
checks specs at run-time

• ESC/Java proves correctness of specs, jmlc, jmlrac,
and jmlunit only test correctness of specs.

• Hence, ESC/Java is independent of any test suite ,
while the results of runtime testing are only as good as
the test suite .

Joe Kiniry - ESC/Java2 – p.5/10



ESC/Java vs Runtime Checking

There are important differences:

• ESC/Java checks specs at compile-time , while jmlc
checks specs at run-time

• ESC/Java proves correctness of specs, jmlc, jmlrac,
and jmlunit only test correctness of specs.

• Hence, ESC/Java is independent of any test suite ,
while the results of runtime testing are only as good as
the test suite .

• “Testing can show the presence of errors, but not their
absence .”—E. W. Dijkstra

Joe Kiniry - ESC/Java2 – p.5/10



ESC/Java vs Runtime Checking

There are important differences:

• ESC/Java checks specs at compile-time , while jmlc
checks specs at run-time

• ESC/Java proves correctness of specs, jmlc, jmlrac,
and jmlunit only test correctness of specs.

• Hence, ESC/Java is independent of any test suite ,
while the results of runtime testing are only as good as
the test suite .

• “Testing can show the presence of errors, but not their
absence .”—E. W. Dijkstra

• As a result, ESC/Java provides a much higher degree
of confidence than unit testing .

Joe Kiniry - ESC/Java2 – p.5/10



The Hierarchy of Confidence

In general, the more you think about your software, and the
more you write down and use your thoughts, the higher the
quality of the software.

• “hacked out” code with no documentation

Joe Kiniry - ESC/Java2 – p.6/10



The Hierarchy of Confidence

In general, the more you think about your software, and the
more you write down and use your thoughts, the higher the
quality of the software.

• “hacked out” code with no documentation

• + some (English) documentation

Joe Kiniry - ESC/Java2 – p.6/10



The Hierarchy of Confidence

In general, the more you think about your software, and the
more you write down and use your thoughts, the higher the
quality of the software.

• “hacked out” code with no documentation

• + some (English) documentation

• + some unit tests

Joe Kiniry - ESC/Java2 – p.6/10



The Hierarchy of Confidence

In general, the more you think about your software, and the
more you write down and use your thoughts, the higher the
quality of the software.

• “hacked out” code with no documentation

• + some (English) documentation

• + some unit tests

• + complete unit tests

Joe Kiniry - ESC/Java2 – p.6/10



The Hierarchy of Confidence

In general, the more you think about your software, and the
more you write down and use your thoughts, the higher the
quality of the software.

• “hacked out” code with no documentation

• + some (English) documentation

• + some unit tests

• + complete unit tests

• + manually written assertions

Joe Kiniry - ESC/Java2 – p.6/10



The Hierarchy of Confidence

In general, the more you think about your software, and the
more you write down and use your thoughts, the higher the
quality of the software.

• “hacked out” code with no documentation

• + some (English) documentation

• + some unit tests

• + complete unit tests

• + manually written assertions

• + lightweight JML contracts + jmlrac

Joe Kiniry - ESC/Java2 – p.6/10



The Hierarchy of Confidence

In general, the more you think about your software, and the
more you write down and use your thoughts, the higher the
quality of the software.

• “hacked out” code with no documentation

• + some (English) documentation

• + some unit tests

• + complete unit tests

• + manually written assertions

• + lightweight JML contracts + jmlrac

• + heavyweight JML contracts + jmlunit

Joe Kiniry - ESC/Java2 – p.6/10



The Hierarchy of Confidence

In general, the more you think about your software, and the
more you write down and use your thoughts, the higher the
quality of the software.

• “hacked out” code with no documentation

• + some (English) documentation

• + some unit tests

• + complete unit tests

• + manually written assertions

• + lightweight JML contracts + jmlrac

• + heavyweight JML contracts + jmlunit

• + JML models

Joe Kiniry - ESC/Java2 – p.6/10



The Hierarchy of Confidence

In general, the more you think about your software, and the
more you write down and use your thoughts, the higher the
quality of the software.

• “hacked out” code with no documentation

• + some (English) documentation

• + some unit tests

• + complete unit tests

• + manually written assertions

• + lightweight JML contracts + jmlrac

• + heavyweight JML contracts + jmlunit

• + JML models

• + ESC/Java

Joe Kiniry - ESC/Java2 – p.6/10



The Hierarchy of Confidence

In general, the more you think about your software, and the
more you write down and use your thoughts, the higher the
quality of the software.

• “hacked out” code with no documentation

• + some (English) documentation

• + some unit tests

• + complete unit tests

• + manually written assertions

• + lightweight JML contracts + jmlrac

• + heavyweight JML contracts + jmlunit

• + JML models

• + ESC/Java

• + interactive verification
Joe Kiniry - ESC/Java2 – p.6/10



(Spec|Ver)ification Trade-offs

• When using jmlrac and jmlunit you specify any
properties you like .

Joe Kiniry - ESC/Java2 – p.7/10



(Spec|Ver)ification Trade-offs

• When using jmlrac and jmlunit you specify any
properties you like .

• But when using ESC/Java, you are forced to specify
some properties.

Joe Kiniry - ESC/Java2 – p.7/10



(Spec|Ver)ification Trade-offs

• When using jmlrac and jmlunit you specify any
properties you like .

• But when using ESC/Java, you are forced to specify
some properties.

• If you already understand the code, then these
properties are usually obvious .

But for larger programs, this is often not the case!

Joe Kiniry - ESC/Java2 – p.7/10



(Spec|Ver)ification Trade-offs

• When using jmlrac and jmlunit you specify any
properties you like .

• But when using ESC/Java, you are forced to specify
some properties.

• If you already understand the code, then these
properties are usually obvious .

But for larger programs, this is often not the case!

• Once you have these properties documented , then
understanding the code is easier for you, and for
others.

Joe Kiniry - ESC/Java2 – p.7/10



Limitations of ESC/Java

ESC/Java is

• not sound : it may reject a correct spec

Joe Kiniry - ESC/Java2 – p.8/10



Limitations of ESC/Java

ESC/Java is

• not sound : it may reject a correct spec

• not complete : it may accept an incorrect spec

Joe Kiniry - ESC/Java2 – p.8/10



Limitations of ESC/Java

ESC/Java is

• not sound : it may reject a correct spec

• not complete : it may accept an incorrect spec

• These are unavoidable concessions to main goal, that
of finding many (potential) bugs , completely
automatically .

Joe Kiniry - ESC/Java2 – p.8/10



Limitations of ESC/Java

ESC/Java is

• not sound : it may reject a correct spec

• not complete : it may accept an incorrect spec

• These are unavoidable concessions to main goal, that
of finding many (potential) bugs , completely
automatically .

• In practice, neither issue is much of a problem.

Joe Kiniry - ESC/Java2 – p.8/10



Limitations of ESC/Java

ESC/Java is

• not sound : it may reject a correct spec

• not complete : it may accept an incorrect spec

• These are unavoidable concessions to main goal, that
of finding many (potential) bugs , completely
automatically .

• In practice, neither issue is much of a problem.

• ESC/Java2 only supports statically checking a subset
of full JML , but you will likely never use or learn (in this
course) any of JML that ESC/Java2 does not check.

Joe Kiniry - ESC/Java2 – p.8/10



Places where ESC/Java is not Sound

Tricky things to watch out for include:

Joe Kiniry - ESC/Java2 – p.9/10



Places where ESC/Java is not Sound

Tricky things to watch out for include:

• very complex, interdependent invariants

Joe Kiniry - ESC/Java2 – p.9/10



Places where ESC/Java is not Sound

Tricky things to watch out for include:

• very complex, interdependent invariants

• misuse of pragmas like assume, axiom, and nowarn

Joe Kiniry - ESC/Java2 – p.9/10



Places where ESC/Java is not Sound

Tricky things to watch out for include:

• very complex, interdependent invariants

• misuse of pragmas like assume, axiom, and nowarn

• verification of loops

Joe Kiniry - ESC/Java2 – p.9/10



Places where ESC/Java is not Sound

Tricky things to watch out for include:

• very complex, interdependent invariants

• misuse of pragmas like assume, axiom, and nowarn

• verification of loops

• complex arithmetic with large numbers

Joe Kiniry - ESC/Java2 – p.9/10



Places where ESC/Java is not Sound

Tricky things to watch out for include:

• very complex, interdependent invariants

• misuse of pragmas like assume, axiom, and nowarn

• verification of loops

• complex arithmetic with large numbers

• ignored exceptional conditions

Joe Kiniry - ESC/Java2 – p.9/10



Places where ESC/Java is not Sound

Tricky things to watch out for include:

• very complex, interdependent invariants

• misuse of pragmas like assume, axiom, and nowarn

• verification of loops

• complex arithmetic with large numbers

• ignored exceptional conditions

• aliasing and shared variables

Joe Kiniry - ESC/Java2 – p.9/10



Using ESC/Java for Java Card

• ESC/Java can cope with Java Card-sized programs.

Joe Kiniry - ESC/Java2 – p.10/10



Using ESC/Java for Java Card

• ESC/Java can cope with Java Card-sized programs.

• First step: verify lightweight, weak (but far from
trivial!) specs

/*@ requires apdu != null;

ensures true;

signals (APDUException) true;

signals (ISOException) true;

@*/

public void process(APDU apdu) { ..

That is, focus on “ non-nullness ” and exceptions .

Joe Kiniry - ESC/Java2 – p.10/10



Using ESC/Java for Java Card

• ESC/Java can cope with Java Card-sized programs.

• First step: verify lightweight, weak (but far from
trivial!) specs

/*@ requires apdu != null;

ensures true;

signals (APDUException) true;

signals (ISOException) true;

@*/

public void process(APDU apdu) { ..

That is, focus on “ non-nullness ” and exceptions .

• Next, “upgrade” lightweight contracts to heavyweight
contracts , focusing on preconditions and assignable
clauses.

Joe Kiniry - ESC/Java2 – p.10/10



Using ESC/Java for Java Card

• ESC/Java can cope with Java Card-sized programs.

• First step: verify lightweight, weak (but far from
trivial!) specs

/*@ requires apdu != null;

ensures true;

signals (APDUException) true;

signals (ISOException) true;

@*/

public void process(APDU apdu) { ..

That is, focus on “ non-nullness ” and exceptions .

• Next, “upgrade” lightweight contracts to heavyweight
contracts , focusing on preconditions and assignable
clauses.

• Next, add interesting invariants .
Joe Kiniry - ESC/Java2 – p.10/10



Using ESC/Java for Java Card

• ESC/Java can cope with Java Card-sized programs.

• First step: verify lightweight, weak (but far from
trivial!) specs

/*@ requires apdu != null;

ensures true;

signals (APDUException) true;

signals (ISOException) true;

@*/

public void process(APDU apdu) { ..

That is, focus on “ non-nullness ” and exceptions .

• Next, “upgrade” lightweight contracts to heavyweight
contracts , focusing on preconditions and assignable
clauses.

• Next, add interesting invariants .

• Finally, focus on interesting postconditions . Joe Kiniry - ESC/Java2 – p.10/10


	What is Extended Static Checking?
	What is Extended Static Checking?
	ESC/Java
	ESC/Java vs Runtime Checking
	The Hierarchy of Confidence
	(Spec|Ver)ification
Trade-offs
	Limitations of ESC/Java
	Places where ESC/Java is not Sound
	Using ESC/Java for Java Card

