
Specification of the JavaCard APDU protocol in JML

To check your applet with ESC/Java2, you will have to use our JML
specifications for the Java Card API classes as follows

escjava2 -bootclasspath/esc2 jc api YourApplet.java

In particular, your applet will use the APDU protocol, as provided by the
API class javacard.framework.APDU.java.

1

The APDU class

An applet’s process method receives an APDU, on which it invokes

public static byte[] getBytes()

public static short getInBlockSize()

public static short getOutBlockSize()

and

public short setIncomingAndReceive()

public short receiveBytes(short bOff)

public short setOutgoing()

public void setOutgoingLength(short len)

public void sendBytes(short bOff, short len)
...

in a certain order!

2

Informal JavaDoc spec

3

Informal JavaDoc spec

receiveBytes

public short receiveBytes(short bOff) throws APDUException

Gets as many data bytes as will fit without APDU buffer overflow, at the

specified offset bOff. Gets all the remaining bytes if they fit.

Parameters: bOff - the offset into APDU buffer.

Returns: number of bytes read. Returns 0 if no bytes are available.

Throws: APDUException - with the following reason codes:

• APDUException.ILLEGAL USE if setIncomingAndReceive() not called or if

setOutgoing() or setOutgoingNoChaining() previously invoked.

• APDUException.BUFFER_BOUNDS if not enough buffer space for incoming block size.

• APDUException.T1_IFD_ABORT if T=1 protocol is in use and the CAD sends in an

ABORT S-Block command to abort the data transfer.

4

Informal JavaDoc spec

Specification of the invocation order in the JavaDoc is not very clear.

A specification as message sequence chart, finite state machine (FSM), etc.
would be better.

Our JML spec of APDU expresses the order using a FSM.

5

Reference implementation

Our FSM is based on the reference implementation rather than the JavaDoc.

The reference implementation of APDU uses 7 flags

incomingFlag, outgoingFlag, outgoingLenSetFlag,

lrIs256Flag, sendInProgressFlag, noChainingFlag,

noGetResponseFlag

to enforce invocation order, eg.

public short receiveBytes(short bOff) throws APDUException

{ if (!getIncomingFlag() || getOutgoingFlag())

APDUException.throwIt(APDUException.ILLEGAL_USE);

...

but protocol has a lot less than 2
7 states !

6

7

� � ��� � �� �	

 ��
 ��� �� � �� � �� �� � �� ��� �

�

�
�� �� �� � � �
 � �

� ! ��
 "$#
 �� �� � % � � �
 & '
�� � � �

��
 " #
 �� �� �

��
 " #
 �� �� � (�) &�* �� �� �

��
 " #
 �� �� � �� � + � � �

, ��
 " #
 �� �� � % � � �
 & -
�� � � �

.

8

Using a ghost field and FSM to specify APDU

//@ public ghost int _APDU_state;

public short setIncomingAndReceive()

/*@ public behavior

@ requires _APDU_state == 1 && ... ;

@ ensures _APDU_state == 2 && ... ;

@*/

public short receiveBytes(short bOff)

/*@ public behavior

@ requires _APDU_state == 2 && ... ;

@ ensures _APDU_state == 2 && ... ;

@*/

9

Relating reference implementation to formal spec

Invariants relating the abstract state to its concrete representation, eg:

/*@ invariant

@ _APDU_state == 2

@ <==>

@ getIncomingFlag() && !getOutgoingFlag();

@*/

(Checked with ESC/Java)

10

Fix in Java Card 2.2

In JavaCard 2.2, the APDU protocol is specified as a FSM. There the class
includes a method

byte getCurrentState()

which returns the state of the APDU object, which has the
value of one of several constants STATE_INITIAL, STATE_OUTGOING,
STATE_OUTGOING_LENGTH_KNOWN, . . .

11

More detailed JML spec of receiveBytes(short bOff)

/*@ requires _APDU_state == 2 &&

@ 0 <= bOff &&

@ bOff + getInBlockSize() <= BUFFERSIZE;

@

@ assignable _APDU_state, _Lc, buffer[bOff..bOff+\result-1];

@

@ ensures _APDU_state == 2 &&

@ 0 <= \result && \result <= \old(_Lc) &&

@ _Lc == \old(_Lc) - \result &&

@ bOff + \result <= BUFFERSIZE &&

@ (* data received in buffer[bOff..bOff+\result-1] *);

@

@ signals (APDUException e) e.getReason() == APDUException.IO_ERROR

@ || e.getReason() == APDUException.T1_IFD_ABORT;

@*/

Here ghost field _Lc is the length of incoming command.

12

Bug in reference impl. of receiveBytes

The reference implementation does NOT meet this spec, but requires a
stronger precondition than

bOff + getInBlockSize() <= BUFFERSIZE,

namely

bOff + getInBlockSize() < BUFFERSIZE.

This is probably a bug.

13

