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Abstract This document provides a high-level description of the different source
code components of the OV-Chip 2.0 project and their interplay. It augments the
rather low level javadoc generated documentation of the sources.
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1 Introduction

One aim of the OV-chip 2.0 project was to check whether and how selective disclosure protocols
can be implemented on Java Smart Cards. The OV-chip 2.0 project is sponsored by the NL-
net foundation, see https://ovchip.cs.ru.nl/OV-chip_2.0 and http://www.nlnet.nl/.
The project started in July 2008. Until spring 2009 applets and corresponding host driver code
has been developed to implement the RSA variants of Brands selective disclosure protocols [1].

Apart from writing the applet code and host driver code itself it was also necessary to invest
in general infrastructure and test and performance measurement code. For all the Java code
a javadoc generated API documentation is available. This document complements this API
documentation by explaining the structure of the code on a somewhat higher level.

Obtaining the javadoc API documentation

The OV-chip source code releases contain prebuild API documentation in the directory
doc/generated.

To generate the API documentation it is necessary to configure the sources. Therefore follow
the steps in Section 3.2 or in the file src/README in the distribution. After configuration execute
make doc in the src directory. Afterwards navigate to src/doc/generated/index.html.

Problems of the Java Card Platform

As any Java Card application the OV-Chip sources consist of applet code, which is running on
the Java Card, and host-driver code, which is running on the host to which the Java Card reader
is attached. In this document I simply use the terms applet and host driver, respectively, to refer
to both software pieces. Actually, the OV-Chip 2.0 repository contains several applets and host
drivers, see Section 2.

The applet must be written in the Java Card language, which is usually described as a subset
of Standard Java. The applet is moreover limited to the Java Card Application Programming
Interface (API), which is much simpler and smaller than the Standard Java API. The host driver
is a standard Java program and can use any library available on the system. In this document
Java always refers to Standard Java, for the card dialect I explicitly use the term Java Card.

The host driver controls the applet by sending Command APDU’s to the card and receiving
the card responses as Response APDU’s. The card only performs computations when triggered
by a Command APDU. After the Response APDU is sent back from the card to the host the
computation on the card stops until the next Command APDU arrives.

For developing non-toy Java Card applets one has to deal with the following problems.

• Although Java Card is a subset of Java, the API’s and the programming conven-
tions and requirements differ so much that one cannot share non-trivial code be-
tween the host and the card. Package and import declarations are different on the
two platforms and even some standard methods are called differently (e. g., javac-
ard.framework.Util.arrayCopyNonAtomic versus System.arraycopy). In the OV-Chip 2.0
project non-trivial portions of the code must be shared between the host and the card. Du-
plicating this code for just changing the imports is obviously not a solution. (For testing
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purposes, it is possible to compile applet and host driver code into one application that
can be tested and debugged without card or emulator on the standard Java virtual machine
with a normal debugger or, more trivially, by adding print statements into the applet code.
Duplicating the applet code for this purpose would be absurd.)

• Command and Response APDU’s are limited to 255 bytes of data. Often, arguments
and/or results of a method invocation on the card are longer and have to be sent with
several APDU’s.

• The existing Java Card Remote Method Interface (RMI) is limited to one APDU, that is
to 255 bytes for arguments and results, respectively. The Java Card RMI is therefore often
not applicable. The existing libraries for sending APDU’s work on byte arrays. However,
for convenient programming one wishes a typed method interface.

A bit more OV-Chip 2.0 specific are the following two problems:

• Cryptographic protocols typically consist of several steps, whose order must not be
changed. The applet must maintain some state to protect itself against malicious host
drivers that call the protocol steps in the wrong order.

• There is no big integer library for programming cryptography on Java Card. Because
of the limited resources on the card (e. g., applet deletion is often the only form of
garbage collection) and the limitations in Java Card existing Java big integer libraries
(e. g., java.lang.BigInteger or bouncy castle) cannot easily be ported.

This hacker guide to the OV-Chip 2.0 sources explains the solutions developed for these prob-
lems in the OV-Chip 2.0 project on a more abstract level. This guide should be considered as an
abstract introduction to the javadoc generated documentation of the sources.

The first problem (sharing code between host and card without duplication) is solved by pre-
processing the real sources with cpp, the standard C preprocessor. The compilation system and
the use of the preprocessor are covered in Section 3.3.

The last problem (big integers) is solved by a special purpose big integer library, the Bignat
library, covered in Section 5.

The remaining problems (stateful typed method invocation with arguments and results of ar-
bitrary number and size) is solved by the OV-Chip 2.0 Java Card protocol layer, shortly protocol
layer, described in the next section.

The mentioned problems and the developed solutions induced a particular structure of the
applet and the host driver, see Figure 1.

Terminology

In the OV-Chip sources there are a number of (outer) classes that only consist of static fields and
whose constructor is protected to disable object creation. Such classes are called static classes
in this document and in the javadoc generated documentation.

The notation util/APDU_short refers to the class APDU_short that is defined in the file
util/APDU_short.java in the src subdirectory. When preprocessed and compiled for the
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Figure 1: Applet and host driver structure for the OV-Chip application. The communication layer is
provided by the OV-Chip protocol layer, which provides a typed method interface for the com-
ponents sitting on top of it. The Bignat library provides big integer functionality for the card.
On the host the standard big integer library java.math.BigInteger is used.

host driver it belongs to the package ds.ov2.util. When preprocessed and compiled for an applet
the package depends on the applet name.

The notation util/APDU_short.size refers to the field or method size of util/APDU_short.

2 Structure of the OV-chip Source Tree

A new structure of the repository is in the pipeline. The following documents the current
state and will soon change.

The source tree contains the following top-level directories.

src/misc Miscellaneous, unrelated code.

Contains small standalone programs that test specific features as well as small test applets
with their host drivers. There is also a program that queries the card identification string.

src/emulator javax.smartcardio.TerminalFactory providers JcopEmulator and SunEmulator
for the jcop emulator and the Sun emulators cref and jcwde.

These providers complement the standard PC/SC provider for talking to one of the men-
tioned emulators. Most host driver code in the OV-chip sources checks at start-up for the
presence of these providers. When present they connect to the jcop emulator by default.
The Sun emulators or a real Java Card in a PC/SC terminal can be selected via options
(-sun and -c or -r n).

The provider code is completely independent of the other OV-chip sources and docu-
mented separately.

In addition to the providers there is also wrapper for the Sun emulators that fixes the
annoying terminate-on-disconnect problem of the Sun providers.
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src/tools General tools. Contains, with decreasing importance:

IDL compiler Perl script idl.perl for transforming ASCII text protocol descriptions
into Java source code for using these protocols with the OV-chip protocol layer. See
Section 6.

Applet_id Standalone Java program to convert strings into hex applet ID’s that are
needed for the command line of the Java Card applet converter.

gosh from Norman Feske. Tool for typesetting Usenet style ASCII files. Used for this
Hackers guide. The gosh sources are in a cvs vendor branch to facilitate tracking
new upstream releases.

Transform converter error messages An ocaml program converter_errors to
transform the error messages of the Java Card applet converter into a standard
format that is recognized by Emacs.

port dump An Ocaml program to dump the traffic that goes over a local port. Can be
used to dump the communication with the Java Card emulators.

src/util Base library for the OV-chip applets and host drivers.

Contains the code for the OV-chip protocol layer and provides some platform independent
interfaces for some of the differences between standard Java and Java Card. Contains
additionally some miscellaneous code that does not fit elsewhere.

src/bignat The bignat library.

Contains the bignat library for manipulating long natural numbers on Java Card. Contains
also some support classes for host drivers that provides a more convenient interface with
standard Java BigInteger’s. Finally, there is a test frame for testing the bignat library on a
standard JVM.

src/test Test and Performance applet and host driver.

The test applet tests and measures the performance of the OV-chip protocol layer and of
various methods of the bignat library.

src/front Frontoffice code of the OV-chip project.

Contains three applets that implement the RSA flavour of Brands selective disclosure pro-
tocols. The first one, the plain RSA applet, uses the RSA cipher on card to compute
the exponent and Montgomery multiplication to compute products. The second one, the
Montgomerizing RSA applet, computes all powers and products with Montgomery multi-
plication on the Java Card VM without crypto coprocessor. Its name stems from the fact
that it exchanges all data in Montgomerized form with the host driver. The third one, the
squaring RSA applet, uses the RSA cipher for computing both, powers and products. Its
name is inspired by the equation used to compute products with exponentiation: a * b =

((a + b)�2 - a�2 - b�2)/2.
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The directory additionally contains the necessary host driver code that implements key
generation, applet installation and personalization and the host side of the protocols. There
is also a standalone program that can run and measure arbitrary rounds of the protocol.

src/gui Presentation GUI for the RSA applets.

The GUI imitates different locations that are important in the OV-chip 2.0 context: The
office of the service provider, a resigning automaton and an entry gate.

src/doc Documentation.

Contains this Hackers guide and some necessary data for generating the javadoc API doc-
umentation. The API documentation is generated in the Makefile in src. When built the
API documentation is located in the subdirectory generated.

src/ec Elliptic cure test code.

src/lib (Mostly) third party library code.

Contains the bouncy castle library in a vendor branch with generalizations for elliptic
curves.

src/schnorr-id Schnorr’s identification protocol.

First test applet that has been implemented in the project to gain experience with the Java
Card platform.

src/_doc_build_dir Build directory for the javadoc API documentation. Will be created
when the API documentation is generated.

The sources in the subdirectories util, bignat, test, front and gui do not use standard
Java compilation. For compilation the Makefile’s in these directories construct (possibly sev-
eral) Java conform source trees in the subdirectory _java_build_dir on the fly. The Makefile
of src/front, for instance, will create the subdirectories plain_rsa_card, mont_rsa_card,
rsa_card_test and rsa_host_test inside src/front/_java_build_dir. Each of these
subdirectories will contain a complete source tree for, respectively, the plain RSA applet, the
Montgomerizing RSA applet, the standalone host driver and the host-only test frame. To popu-
late these source trees the original sources, from e. g., src/util, are copied and preprocessed
by cpp and sed. See Section 3.3 for details on the build system.

3 Building and running the code

Because of patent issues the public releases of the OV-chip sources are missing a number of
method bodies. These omissions prevent the compilation of the OV-chip applets in the front

directory. The algorithms that are implemented in these method bodies are extensively described
in [3] and [1] and the API documentation. It should therefore not be too hard to rewrite the
missing methods.
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The test applet in the test subdirectory and the Bignat test frame are not affected by patent
issues. They can always be build and run.

The requirements for compiling and the configuration of the code are described in the first
two subsections. The programs that one can experiment with are described in section 3.4 below.

3.1 Requirements

Compilation requires Java 1.6 because the javax.smartcardio package is used. A number of
third party packages are required or optionally needed. Without the required packages only this
Hackers Guide can be compiled into a printable version (make guide in src). With only the
required packages one can build the main applets, the host drivers and run them on real Java
Cards (make core in src). With the optional packages one can run the applets in one of the
emulators (make all in src). If only some of the additional packages are available it might be
possible to build more that what make core does. This has to be done on a per-subdirectory
basis then.

Required packages

Java Card Kit 2.2.1 for compiling applets.

Get it from http://java.sun.com/javacard/downloads

Global platform manager from Wojciech Mostowski. For installing and deleting applets.
The global platform manager will soon be released as open source. Until then it is included
in the OV-chip releases as gpm.jar.

If you got this OV-chip source tree as a cvs checkout from the sospublic repository, then
you have to checkout and build the Global platform manager yourself. Do

svn co svn+ssh://username@solo.science.ru.nl/vol/sos/repos

/svn/sospublic/woj/GlobalPlatformManager

(the command must be on one line without space between repos and /svn). Change to
GlobalPlatformManager/src and do ’make jar’ to produce gpm.jar.

Optional packages

jcop tools The jcop tools (which are not any longer distributed by NXP) contain a nice Java
Card emulator, which can be used to test and run all applets of this repository.

Ocaml Needed for some non-essential tools.

Java Card Kit 2.2.2 Needed for the SunEmulator provider that can talk to the SUN emula-
tors. Further, there is a 2.2.2 test applet in src/misc/test_jc222, which checks for the
presence of the package javacardx.framework.math.BigNumber on the card.
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3.2 Con�guration

Until somebody writes a neat configuration script, configuration has to be done by editing a
makefile. For that copy src/ConfigMakefile.in to src/ConfigMakefile and fill the vari-
able definitions therein appropriately. All makefiles include ConfigMakefile to access the
configuration.

Additionally all makefiles optionally include a file LocalMakefile. Optional inclusion (with
-include) here means that in case LocalMakefile is not present it is treated as it were empty.
The LocalMakefile can be used to override the configuration on a per-directory basis, to add
additional goals, or to set the default goal.

3.3 Compilation

This section describes the compilation system used for the OV-chip applet and host driver
sources, that is for the directories src/util, src/bignat, src/test, src/front and
src/gui. All other directories use the default Java system, were .java files are compiled in the
same directory into .class files and the application is started with a shell script that gathers all
the arguments for the java executable.

To achieve platform independence and in order to select variations of the code, many source
files must be preprocessed with the C preprocessor cpp. As a rule of thumb, code for the card is
always preprocessed, while code that runs solely on the host does only need preprocessing under
special circumstances. (For simplicity the Makefile’s pipe all files through cpp, but those which
do not need preprocessing could just as well be copied.) The javadoc API documentation list for
every class which cpp directives are used in the sources of that class. A list of all cpp directives
is in src/doc/generated/index.html (after the API documentation has been generated).

The preprocessor inserts line directives in its output. Therefore the files must be further pro-
cessed with the stream editor sed to push the line directives into comments.

The cpp preprocessing is controlled with a config file that is #include’d in all files that
need preprocessing. On the basis of certain top-level directives the config file enables and
defines other directives. This way cpp invocations in the Makefiles contain no more than one
hard-coded -D switch. For example for building the plain RSA applet the make-goal applet
causes the source files to be preprocessed with -DOV_PLAIN_RSA_TEST_APPLET. The directive
OV_PLAIN_RSA_TEST_APPLET is only used in src/front/config to define the right set of
directives.

Depending on the preprocessor directives one source file might give rise to different incom-
patible Java classes. Building jar files would therefore be rather complicated. Every application
and applet is therefore compiled in its own complete source tree that is generated by the Makefile
on the fly. For instance, the file util/APDU_Serializable is necessary in both, the plain RSA
applet and the host driver. When building these two things, the makefile src/front/Makefile
first preprocesses util/APDU_Serializable with -DOV_PLAIN_RSA_TEST_APPLET and
copies the result to _java_build_dir/plain_rsa_card/util/ds_ov2_prsa, where javac

can compile it. Later the same file is preprocessed with -DHOST_TESTFRAME and the result is
copied to _java_build_dir/rsa_card_test/ds/ov2/util, where it is compiled again.
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Because of this copy process the makefiles have to list all source files that are needed for a
given goal. This is a bit inconvenient, because it means that one usually has to change several
makefiles when one source file is added, see Section 7.1.

As stated already in Section 2 all compilation is done in a temporary _java_build_dir

subdirectory, which contains one subdirectory for every build goal. For instance
_java_build_dir/plain_rsa_card inside src/front for the plain RSA applet. Inside
this goal-specific build directory more subdirectories are created as follows.

For normal applications (that run on the standard JVM) everything is as expected. These appli-
cations are declared to be in a third-level package inside ds.ov2, for instance ds.ov2.bignat

for the bignat test frame. Therefore the goal-specific build directory contains a subdirectory
ds/ov2 with further subdirectories util, bignat and so on, as needed. Source files from
src/util are preprocessed into ds/ov2/util, as one would expect.

Applets are placed into a top-level package, for instance ds_ov2_prsa for the plain RSA ap-
plet. So the Java compiler expects all sources in a subdirectory with the name ds_ov2_prsa.
The makefile, however, must keep track whether a given source files comes from src/util or
src/bignat or somewhere else. Therefore the goal-specific build directory contains one sub-
directory, say front/ds_ov2_prsa. Additionally there are symbolic links util, bignat, and
so on, that all point to the front directory. This has the following effect: For the java compiler
all sources lay in one directory. The makefile however, can for instance distinguish between
util/ds_ov2_prsa/APDU_Serializable and bignat/ds_ov2_prsa/Bignat in order to re-
trieve APDU_Serializable from src/util and Bignat from src/bignat.

3.3.1 Compilation steps

In order to compile an applet or a normal application the following steps are performed by the
makefile.

directory creation Create the needed directory structure inside _java_build_dir, as ex-
plained before.

cpp prepreocessing Create a preprocessed .prejava file with line number directives.

First the do-not-edit-warning from src/not-edit-warning.java is copied into the final
location. Then the source file is piped through cpp and the output is appended to the final
location. The cpp command line receives one -D switch with the top-level directive. Some
goals, for instance the host driver of the test applet are build without a top-level directive.

Additional directives can be specified in the CPPFLAGS variable. This is empty by default,
but could for instance set to -DOPT_SPECIAL_SQUARE to compile the bignat library with
the special square optimization, see Section 3.5.

sed preprocessing Push the line directives into comments and make the resulting .java file
read-only to prevent accidental changes of generated files.

java compilation with javac to produce .class files.

cap �le conversion for applets only.
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3.4 Running

The applets must of course be loaded onto a Java Card or into an emulator before they can
run. Note that the SUN emulators are only good enough for some test applets from src/misc

because they lack an RSA cipher. The host driver of the test applet and the front office host
driver are linked with Wojciech Mostowski’s global platform manager and can therefore install
their applets themselves. The test host driver checks the applet creation date and some global
parameter and automatically reinstalls the test applet on any mismatch. The options -reinstall
and -keep-applet force a different behavior. The front office host driver always reinstalls the
selected applet.

Because starting normal Java applications is somewhat difficult there are shell scripts that
build the right java command line. Sometimes these shell scripts depend on the configuration
and are therefore created from by the makefile from corresponding .in files.

Apart from the presentation GUI in src/gui all these applications are non-interactive com-
mand line tools that are controlled with command line switches. They all support the switches
-h, -help and �help.

There are the following scripts for running different parts of the OV-chip code.

bignat/run-testbignat The bignat test frame. This test frame can test several aspects of the
bignat library on a conventional JVM (i. e., running on a PC and not on a Java Card) and
evaluate their performance. For more documentation about the bignat test frame see the
javadoc documentation for bignat/Testbignat.

bignat/performance-test Measure the performance of the bignat test frame for different con-
figurations against the standard BigInteger library. This is a shell script that recompiles
and runs the bignat test frame several times in different configurations.

test/test_host The test host driver. This host driver gives access to the test applet. It can be
used to check the functionality of the bignat library on Java Card and to measure its per-
formance. For more information about using the test applet see the javadoc documentation
of test/Test_host.

test/gpm-install Install the test applet on a card or the jcop emulator. Not really needed any
more, because of the automatic reinstallation done by the test host driver. Assumes gpm
to call the global platform manager. The most common installation parameters are hard
coded in this script, which is a potential pitfall, because they have to agree with the values
hard coded in test/State.

front/cardtestframe The front office test frame that (re-)installs and communicates with one
of the RSA applets on a card or emulator. For more documentation see the javadoc docu-
mentation of front/Card_testframe.

front/plainhosttestframe The front office host test frame that runs host driver and the plain
RSA applet code in one application on the normal JVM. For more documentation see the
javadoc documentation of front/Host_testframe.

11



front/monthosttestframe The front office host test frame that runs host driver and the Mont-
gomerizing applet code in one application on the normal JVM. For more documentation
see the javadoc documentation of front/Host_testframe.

front/squarehosttestframe The front office host test frame that runs host driver and the
squaring applet code in one application on the normal JVM. For more documentation
see the javadoc documentation of front/Host_testframe.

gui/gui Start the presentation GUI. The presentation GUI is mostly self explaining and displays
tool-tip help where not.

misc/identify Issue the card identification APDU and display the result.

misc/host Generic misc host driver, to be used with the RSA test applet in misc/test_rsa

and the 2.2.2 test applet in misc/test_jc222.

misc/sha_host Host driver for the SHA-1 test applet.

misc/int_host Host applet for the int/short performance applet in misc/test_int.

misc/emulator-cref Run a given applet inside the cref emulator inside owrapper. (The
owrapper tool keeps the connection to the emulator open, such that it does not die when
the host driver disconnects, see Section 2.)

misc/emulator-jcwde Ditto for the jcwde emulator.

misc/test_ * /gpm-install Install one of the applets, using the global platform manager
through an assumed gpm executable.

doc/doccount.perl Computes the documentation coverage, see src/doc/count.

3.5 Variations of the sources

3.6 Major make�le goals

4 The OV-Chip protocol layer

Technically the OV-Chip protocol layer is a patchwork, consisting of a library (of Java classes),
hand-written, and generated code. The protocol layer is the low-level communication layer
between host driver and applet, see Figure 1. Its respective parts run inside the host driver
and the applet. Essential parts of the code are shared between host driver and applet. The
hand-written and generated code are applet specific. The code generation is done by an IDL
compiler (written in perl, because I felts here-documents might be useful). The IDL compiler
takes protocol files as input and generates the so-called protocol descriptions and two versions
of the host stub code. The first version, the real stub code, is for communicating with the applet.
The second version, the test stub code is for use in test frames, see Section 4.14.
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A central notion for the protocol layer is that of a protocol. A protocol is a relatively indepen-
dent piece of functionality of an applet. Typically an applet implements several protocols that
can (more or less) arbitrarily selected from the host driver. In general the functionality of one
protocol requires several message pairs to be send between host driver and the applet. Usually,
for each message pair one method of the applet is run on the card.

For example, the current implementation of the OV-Chip 2.0 applet implements 4 protocols:

allocate and initialise For technical reasons (see Section 4.10) applet initialisation and per-
sonalisation is split into two protocols, the first one for allocating all data structures on the
card and the second one for initialising those data structures. These two protocols both
consist just of one step.

resign To change its blinding and to obtain a signature of the new blinded attribute expression
three steps are necessary. In the first step the applet sends its current blinded attribute
expression together with the signature to the host (which will then check the validity of
the signature). In the second step the card computes the hash and in the third step the
signature is completed.

entry gate The protocol for entry gates consists of two steps. In the first the card commits to
its blinded attribute expression and in the second one it responds to the challenge of the
host.

For both, the resign and entry gate protocols the steps must be executed in the right order and it
is not permitted to interleave the protocols.

In the context of the OV-Chip protocol layer a protocol is defined as a tuple, consisting of a
protocol identification number and an array of protocol steps, see class util/Protocol. Each
protocol step consists of a method together with one array of argument objects and one array of
result objects, see class util/Protocol_step. The protocol identification number is used to
select the protocol when talking to the card, it is not fixed for a given protocol but determined
during initialisation, see Section 4.10. The method of a protocol step is a method of the applet.
To execute a protocol step, first the arguments are transferred to the card, then the method is
executed on the card and finally, the results are copied back to the host. Both, transferring
arguments and results, can require several APDU’s if the respective data size exceeds 255 bytes
(which happens very often for the OV-Chip protocols).

The OV-Chip 2.0 protocol layer implements the following features.

• Remote method invocation on the card with transferring arguments and results of arbitrary
size.

• Enforcing the order of the single steps of each protocol.

• Data type conversion from host to card data types and back.

• Measuring the duration of methods on the card.

• Provide a simple test environment for applet code.
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4.1 Exemplifying the OV-Chip 2.0 Protocol Layer

Lets look closer at the second step of the entry gate protocol. Its signature is described in the file
front/RSA_card_protocol.id as follows.

step respond: data.gamma_beta_3 -> data.remainders, data.result

call card.respond_to_challenge()

Here step is a keyword that introduces a protocol step declaration (of name respond)
and call is the keyword that defines the method belonging to this step. The Variable
data refers to an instance of class front/RSA_data, which contains (among others) two
bignat/Bignat fields gamma_beta_3 and result and one bignat/Vector field remainders.
The variable card refers to an instance of class front/RSA_card, which contains a method
respond_to_challenge.

The method front/RSA_card_protocol_stubs.respond_call represents the top-level
interface of this protocol step on the host side.

public Respond_result respond_call(CardChannel _cc,

BigInteger _data_gamma_beta_3_host_arg)

throws CardException

(Note that the class front/RSA_card_protocol_stubs is generated by the IDL compiler and
therefore not present in the vanilla sources.) The inner class Respond_result is a record with
the following three elements.

public final long duration;

public final Host_vector data_remainders;

public final BigInteger data_result;

The first field contains the duration that it takes to execute the step on the card, see Section 4.12.
The other two fields contain the declared results of the step. Note the type differences between
the declaration of the respond step and the respond_call method. Note also how the two
results of the step are wrapped in a record.

The method that is called on the card for this protocol step has the following signature (see
front/RSA_card).

public void respond_to_challenge()

Note that the arguments and results do not really appear as arguments and results here. Because
there is usually no garbage collector on the card, the objects that are used as arguments and
results must be statically allocated. The method can therefore access arguments and results via
their static references.

The stub method respond_call performs the following actions, when called from the host
driver.

1. It wraps the actual gamma_beta_3 argument into an bignat/APDU_BigInteger object and
checks compatibility with the declared argument.
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The wrapping is necessary, because only objects with the util/APDU_Serializable inter-
face can be sent to or received from the card. The big integers of type bignat/Bignat are
static in size. The compatibility check therefore ensures that the actual argument (which
is a dynamically sized BigInteger) fits into the size of the declared argument.

2. The actual argument is converted to an array of bytes and sent to the card in as many
APDU’s as necessary.

3. On the card, the meta information in the received APDU’s is decoded to determine that the
host wishes to execute the second step of the entry-gate protocol now. It is then checked
whether the protocol layer in the applet is in the right state in order to execute this step
(which is only the case if the first step has just been finished with the preceding APDU).

4. The applet protocol layer copies the data from the argument APDU’s into the statically
allocated argument objects.

5. After the last argument byte has been received the method respond_to_challenge is
called on the card.

6. After completion of the method respond_to_challenge the data in the statically allo-
cated result objects is sent in response APDU’s to the host. The protocol layer inside the
host driver has to issue sufficiently many APDU’s to enable the card to send all result data
back.

7. Before sending the last response APDU, the protocol layer in the applet increases as last
action the protocol-step counter. Thereby it notices that the entry-gate protocol has been
finished and it therefore resets the current protocol pointer on the card. The host driver
can then select a different protocol with the next APDU.

8. On the host the received data is copied into freshly allocated objects, the measurement of
the duration of the step is completed and a freshly allocated Respond_result record is
filled, which is then returned as result of the respond_call method.

There are several components in the protocol layer both on the host and on the card that have
to play together to achieve the just described behavior. In particular:

• The util/APDU_Serializable interface and its implementations for converting typed data
to and from byte arrays.

• On the card an instances of util/Protocol_applet, util/Registered_protocols and
util/Card_protocol implement together the protocol layer. These classes are instanti-
ated and parametrized with typically two applet specific classes. For the plain RSA applet
these are front/RSA_applet and front/Front_protocols. The first one, front/RSA_applet, is
the main applet class. It extends util/Protocol_applet and provides the applet installation
method. The second one, front/Front_protocols, creates an array containing all supported
protocols. See Sections 4.6 – 4.8 for further explanations.
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Figure 2: Components of the OV-Chip protocol layer.
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• Inside the host driver there is one instance of util/Host_protocol for each protocol step. Its
method run_step performs the compatibility checks, the encoding of the arguments into
possibly several command APDU’s and the decoding of the results from possibly several
response APDU’s.

• The stub code, which is generated by the IDL compiler, is part of the host driver.
The stub code initialises one util/Host_protocol instance for each step. It further
defines one xxx_call method for each step that wrapps the actual arguments into
APDU_Serializable’s, allocates the return value objects and measures time. (Time mea-
surements are only part of the generated stub code if explicitly requested with the key
phrase measure time in the protocol description file.)

• The class front/Front_protocols and instances of the protocol description classes are part
of both, the applet and the host driver. Together, they form the data structure describing all
protocols with their steps and their respective arguments and results. The parts mentioned
in the preceding items access this data structure on various occasions.

Figure 2 shows these components together with the control flow and the data dependencies. The
following sections elaborate on these components.

4.2 Declared and Actual Arguments and Results

Protocols, protocol steps, their arguments and results are described in the protocol files (with
suffix .id). The IDL compiler reads the protocol files and generates (among others) protocol
description classes with suffix _description (in files _description.java). The description
classes contain one instance of util/Protocol_step for each protocol step. Each protocol-
step instance contains one array of argument objects and one array of result objects. These
arrays are of type util/APDU_Serializable, see Section 4.3. The argument and result objects
in these arrays are called the declared arguments and the declared results, respectively. (These
declared arguments and results are textually identical with those appearing in the input files of
the IDL compiler.)

The description class is part of the applet and the host driver. In the applet the declared
arguments and results are directly used during the data transfer. Incoming argument data is
copied into the declared arguments and the methods that run on the card access their arguments
there. Similarly for the declared return values on the card.

The declared arguments that appear in the host drivers copy of the description class are only
used for compatibility checking, see Section 4.3.1. The arguments that are passed into the stub
methods and the results that the stub methods return are completely different objects. These
arguments and results of the stub methods are called the actual arguments and the actual results,
respectively.

4.3 util/APDU_Serializable: Convert Typed Objects to and from Byte
Arrays

Command and Respond APDU’s only transfer bytes. The conversion from typed data to and
from byte arrays are achieved via the methods to_byte_array and from_byte_array of the in-
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terface util/APDU_Serializable. Strictly speaking, all arguments and results of all protocol
steps must implement the util/APDU_Serializable interface. However, to make live easier,
the IDL compiler knows how certain types can be wrapped into an APDU_Serializable inter-
face. For instance, on the host driver side arguments of type BigInteger are wrapped into big-
nat/APDU_BigInteger instances by the generated stub code. For results the stub code internally
allocates APDU_BigInteger’s but returns only their value field (which is of type BigInteger) to
the outside.

The term serialisation is used here and in the javadoc documentation to refer to the process of
converting a typed object into a byte array. The term deserialisation refers to the reverse process
of converting a byte array into a type object.

4.3.1 Compatibility between card and host data types

The general idea is that serialisation/deserialisation is only possible between objects of the same
type. However, because of the limitations of the Java Card environment, the Java Card data
types are often rather inconvenient to use. Therefore, careful cheating about the actual types is
permitted. The only point where the types of the declared and the actual arguments are compared
is the compatibility check performed in the host driver. For the compatibility check the method
is_compatible_with is invoked on the declared argument with the actual argument as parameter.
All type checking is therefore in the responsibility of the implementor or the implementation of
the APDU_Serializable interface.

Although it is against intuition, the compatibility relation that the is_compatible_with method
implements need not be symmetric. That is, the result of x.is_compatible_with(y) can be
different from y.is_compatible_with(x).

The compatibility check is always invoked on the declared arguments with the actual ar-
guments as parameter. The compatibility check is also performed on the results by invoking
is_compatible_with on the declared result with the freshly allocated actual result object as pa-
rameter. Checking the results is a left-over from the time before the IDL compiler. Nowadays
the result checks can only fail because of bugs in the IDL compiler.

The compatibility check does not only have to check the type, but also that the actual argument
fits in size into the object that is used as argument on the card.

The fact that the method is_compatible_with is only invoked on the declared arguments and
results is used to ensure that certain host-only data types that implement the APDU_Serializable
interface cannot appear in argument or result declarations of protocol steps. For instance, big-
nat/APDU_BigInteger implements the APDU_Serializable interface but it is only wrapping a
BigInteger and should therefore never appear in the interface of a protocol step. To ensure this
the method is_compatible_with of APDU_BigInteger returns false on all arguments, making any
compatibility check fail.

4.3.2 Serialisation Size

The size of a serialisable data type is the length of the byte array that it occupies. In the OV-Chip
context the size of most arguments depends on the key length of the RSA key that is used. That
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RSA key is only generated once in the lifetime of the whole system, therefore arguments and
results never change their size. This observation was used to simplify the whole protocol layer.

The size of all arguments and result objects must not change. The size must further not depend
on the current state of the particular argument or result. The size can be different for different
objects of the same type.

However, for performance measurements in the test applet this rule is broken and the size of
arguments and results of certain protocol steps is changed there. The code that accomplishes
that is guarded with one of the TESTFRAME cpp directives and is therefore only available in
test frames. Changing the size of an argument or result requires that certain parts of the protocol
layer get reinitialised, see Section 4.13.

4.3.3 Splitting

Any data type with size larger than 1 byte must anticipate the fact that it is split over two APDU’s.
Further, because the APDU buffer on the card is only guaranteed to be 32 bytes long, much more
than 2 calls to to_byte_array or from_byte_array might be necessary to (de-)serialise one object.

When (de-)serialisation is split across many calls of to_byte_array or from_byte_array the
context who calls these methods remembers how many bytes have been (de-)serialised (so the
serialisation methods do not have to remember that themselves). The number of bytes that have
been (de-)serialised in preceding calls is passed in the second argument this_index. (De-
)serialisation must continue at the byte with index this_index.

There is one peculiarity about the return value of the two methods to_byte_array and
from_byte_array. In principle they return the number of bytes (de-)serialised in the current
call. There is an exception in order to distinguish the case where the available buffer space is
just sufficient to finish (de-)serialisation, from the case, where the available buffer space does
not suffice (and (de-)serialisation must continue in subsequent calls to the same method). The
exception applies to the case where n bytes of buffer space are available and exactly n further
bytes are needed to finish (de-)serialisation. In this case (de-)serialisation must be finished in
this call and the return value must be n + 1’.

4.4 Command and Response APDU Format

The size of arguments and results of all protocol step does never change (see Section 4.3.2).
Therefore the OV-Chip protocol layer does not use a length-value encoding. The first byte of
the second argument directly follows the last byte of the first argument in the payload of some
APDU. Apart from the data of the serialised arguments the command APDU’s also carry some
meta information in the INS, P1 and P2 bytes. With one exception all the meta information is
only used for error checking on the card. The exception is the first APDU of the first step of a
newly selected protocol. There the card uses the INS byte to determine the protocol identification
number of the new protocol.

The structure of the APDU’s exchanged for one method step is shown in Figure 3.
The header bytes of the command APDU’s are used as follows.

CLA always 0x00
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Figure 3: APDU structure of the OV-chip protocol layer. The figure shows the APDU’s exchanged for
one protocol step, that is for calling one method on the card. A cross means that the respective
field is not present in the APDU.

INS Protocol identification number

P1 Step number

P2 Batch. The batch counts the APDU’s in one step. For arguments it counts upwards from
zero and for results it counts upwards from -128 (i. e., 0x80), that is, upwards from zero,
but with the first bit set.

For all APDU’s exchanged by the protocol layer the status 0x9000 is used to signal successful
completion. Other response status words signal an error, see Section 4.11.

Let the n be the total size (in bytes) of all arguments of some fixed protocol step. To send the
arguments to the card n / 255 + 1 argument APDU’s are used (here / denotes integer division,
i. e., 509 / 255 = 1). All these argument APDU’s have identical INS and P1 bytes, namely the
protocol identification number and the index of the step (i. e., 1 for the second step). The P2
byte (the batch) counts the argument APDU’s from 0 to n / 255. The protocol layer in the applet
always checks the INS, P1 and P2 values and aborts the protocol execution with the appropriate
status, see Section 4.11.

The first n / 255 argument APDU’s contain 255 bytes of data. The first data byte of the first
argument APDU is the first byte of the serialization of the first argument. The remaining bytes
of the first argument and the remaining arguments follow without gap.

For the first n / 255 argument APDU’s the applet only copies their data into the declared
arguments by invoking from_byte_array. The expected response length for these argument
APDU’s is zero, that is, the LE byte is omitted in these argument APDU’s. When the applet
receives the last argument APDU it finishes the deserialisation of the arguments and then imme-
diately calls the action method of this protocol step. The response APDU of the last argument
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APDU is already used to send back the first part of the results. Therefore, the expected response
length of the last argument APDU is set to the total size of all results or to 255, if that exceeds
255.

Let now m denote the total size of all results of this very protocol step. Then m / 255 + 1
response APDU’s are necessary to send all results back to the host driver. Some cards can send
a response of 256 data bytes, even if the expected response length (the LE byte) is set to 255.
For these cards m / 256 + 1 response APDU’s are necessary. The first response APDU is already
sent as response to the last argument APDU. After receiving that the host driver sends m / 255
(or m / 256) result APDU’s.

The INS and P1 byte of the result APDU’s are identical to the argument APDU’s: They
contain the protocol identification number and the step index. The P2 byte (the batch) counts
upwards from -127 (0x81). So the first result APDU has batch -127 (0x81), the second -126
(0x82), the third -125 (0x83), and so on. The response APDU corresponding to batch -128
(0x80) is contained in the last argument APDU. Therefore the batch value -128 (0x80) does
never appear.

None of the result APDU’s transfers data bytes to the card. Therefore the LC byte (the length
of the data field in the command APDU) is not present in all those APDU’s. The expected
response length (the LE byte) is set to 255, except for the last result APDU, where it is sent to
the number of remaining bytes.

Apart from copying the results into the response APDU, the applet performs no other action
for any of the result APDU’s.

After the last result APDU the host driver must directly send the first argument APDU of the
next protocol step of the same protocol. The protocol layer in the applet will check that the P1
byte increases accordingly.

Only when the last protocol step of the current protocol has been completed, the host driver
might select a new protocol by sending the first argument APDU of the first step of the newly
selected protocol. Thus there is no separate protocol selection APDU.

4.5 Limitations

The number of protocols that applets supports is limited to 112, because the INS byte 0x70
is used for the manage channel command, see Section 7.1.2 in [2]. An assertion in the
util/Host_protocol constructor ensures that the protocol identification number is lesser than
0x70.

The number of steps in one protocol should not exceed 256. (Although the current implemen-
tation might even work with more steps.)

The batch limits the total size of arguments and results of one protocol step. The total size of
the arguments and results cannot exceed 128 * 255 = 32640 bytes = 31.9 KB.

4.6 The Protocol data structure: util/Protocol and util/Protocol_step

As described in the beginning of Section 4, a protocol consists of several steps that must be
executed in order. Each step transfers some data to the card, executes one method there and
then transfers some data back to the host. For the purpose of the OV-Chip protocol layer, a
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protocol description is an instance of util/Protocol. Each such instance contains the protocol
identification number and an array of protocol steps. The identification number is the index in
the protocol array over which the protocol is selected. It is initialized by the protocol layer, see
Section 4.7.

Each protocol step contains the following data.

• The declared arguments as an array of type util/APDU_Serializable.

• The code to run on the card as an instance of the interface util/Void_method. The
code typically consists of just one method call. However, in the protocol description files
arbitrary text can be specified as code. The IDL compiler copies this text into the body of
the method method of an inner class with name XXX_call, where the name of the protocol
step is substituted for XXX. When the protocol is initialized one instance of that inner class
is created and stored in the field util/Protocol_step.method.

The field util/Protocol_step.method and the inner classes are only present on the
card or in the host test frame (compare Section 4.14). Therefore the host driver can include
the protocol definitions without including all applet specific code.

• The declared results as an array of type util/APDU_Serializable.

• The step identification number. This number must agree with the P1 byte of the argu-
ment and result APDU’s for that step, see Section 4.4. The step identification number
is computed by the IDL compiler and hard-coded in the protocol description classes (see
Section 4.7).

As an optimization and in order to check the response APDU length on the applet, the protocol
step does also contain the following:

• The size of the declared results in the field util/Protocol_step.result_size,
which is set with util/Protocol_step.set_result_size. This method is called in
the IDL generated code that initializes the protocol steps.

The protocol layer on the card interprets the data structure of protocols and protocol steps in the
obvious way. Internally the protocol layer holds a reference of the current protocol and current
protocol step. When an APDU comes in, its INS and P1 bytes are checked against the current
protocol ID and the current step ID. The data in the APDU is used to deserialize some parts
of the declared arguments. When all arguments have been deserialized the code for this step is
executed and then the results are sent back.

Care must be taken that the references in the argument and result arrays always point to the
right objects. The OV-chip RSA applets, for instance, atomically switch from old to new blinded
attribute expressions by swapping the references in current_blinded_a and new_blinded_a.
After such a swap the references in the protocol steps that point to the current blinded attribute
expression must of course be updated. To facilitate this the IDL compiler generates update_*
methods for each protocol step, each protocol and one update_all for all protocols in a given
description class.

Because of the result_size field one cannot simply change the size of the declared results,
compare Sections 4.3.2 and 4.13.
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4.7 The Protocol Descriptions and Registered_protocols

The OV-chip protocol layer is driven by protocol descriptions, which are stored as instances of
type Protocol. As indicated in Figure 2 these descriptions are shared between the host and the
card. Because there are no compiler-initialized objects in Java Card the protocol description
have to get explicitly initialized. The descriptions and their initialization code is kept in so-
called description classes. These classes are generated by the IDL compiler (see Section 6). If
the input file for the IDL compiler has the name XXX.id then the name of the description class
is XXX_descriptions. Each description class defines all the protocols of its input file (which
can be arbitrarily many). An applet creates usually one instance of every description class to
initialize all protocols. The host driver also creates one instance of every description class in
order to have access to the same protocols.

All protocols of an applet must be collected in one array, the so-called protocol array, see
field protocols in the class XXX_protocols in Figure 2. The instantiation of the description
classes and the collection of all protocols is applet specific. Therefore the corresponding code
has to be written for every applet. For the test applet the corresponding code can be found in
test/Test_protocols for the two OV-chip RSA applets it is in front/Front_protocols.

The library class util/Registered_protocols provides the operations of the OV-chip pro-
tocol layer for protocol arrays. Once the protocol array is created it must be registered with
util/Registered_protocols.set_protocols. This method initializes the protocol iden-
tification numbers such that they match the index of the protocol in the protocol array. The
protocol identification number must be put in the INS byte to select a protocol, see Section
4.4. The method set_protocols does also perform a consistency check on the protocols, see
javadoc documentation for details.

The protocol layer does not make a copy of the protocol array when it is registered. It simply
keeps an alias reference. The protocol array can therefore only be changed under certain condi-
tions, see the javadoc documentation of util/Registered_protocols.set_protocols.

The instance of Registered_protocols in which the protocol array is registered must itself be
registered in the main applet class that extends util/Protocol_applet, see Section 4.8.

The method util/Registered_protocols.set_protocols can be called several times.
This can be used to initialize some protocols at a later stage, after a certain protocol has been
run. Because there is no garbage collection on the card it is sufficient to allocate the protocol
array once with its maximal size. Unused entries are simply filled with a null reference. The
protocol layer ignores the remaining array contents beginning from the first null reference.

In the OV-chip RSA protocols this mechanism is used for the configuration of the key size in
the applet. On applet installation only those objects that do not depend on the RSA key size are
allocated. Then a protocol array with just one non-null reference, for the allocate protocol, is
registered. The allocate protocol transfers the sizes for those objects that depend on the key size
and allocates them. At the end of the allocate protocol a now fully populated protocol array is
(re-)registered.
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