
Computer Security: Hashing
B. Jacobs and J. Daemen
Institute for Computing and Information Sciences – Digital Security
Radboud University Nijmegen
Version: fall 2017

Page 1 of 52 Jacobs and Daemen Version: fall 2017 Computer Security

Outline

Hash function definition

Applications and expected properties

Legacy hash function standards

The SHA-3 standard

Page 2 of 52 Jacobs and Daemen Version: fall 2017 Computer Security

Hash function definition

A cryptographic hash function h takes a message m of arbitrary length
and yields an outcome h(m) of fixed length

h : {0, 1}? −→ 2N typical values for N = 160, 256, 512

I h(m) is called the hash (value) of m. Alternative names:
• message digest
• (cryptographic) fingerprint
• verhaspelingsfunctie (please never use this term)

Page 4 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Hash function definition

Hash function schematic and security

(Sketchy) definition of hash function security
A hash function h(·) is secure if every bit of h(m) depends in a
complicated way of all bits of m

A secure cryptographic hash function is a very useful primitive . . .

Page 5 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Hash function definition



The letter-answering company Random Oracle Inc.

What would the ideal cryptographic hash function look like?

Let us do a thought experiment

Random Oracle Inc.: letter answering service!

Page 6 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Hash function definition

Random Oracle Inc.

1. Message m arrives at Random Oracle Inc.

Page 7 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Hash function definition

Random Oracle Inc.

2a. If m was received earlier, manager picks it from archive. Its file will
also contain the returned response z

Page 8 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Hash function definition

Random Oracle Inc.

2b. If not in archive, employee will (randomly) generate response z

Page 9 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Hash function definition



Random Oracle Inc.

3. Manager copies response z , from archive (2a) or freshly typed (2b)

Page 10 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Hash function definition

Random Oracle Inc.

4. Manager puts file with (m, z) (back) in archive

Page 11 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Hash function definition

Random Oracle Inc.

5. Manager sends response z by courier to sender of m

A hash function h is secure if it behaves as Random Oracle Inc.
I Always return same result h(m) for same message m
I Results h(m) and h(m′) if m 6= m′ look random and unrelated

Page 12 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Hash function definition

Hash function schematic and security (update)

Informal definition of hash function security
A hash function h(·) is secure if hash results h(m) look random with no
apparent relation with their input m

Page 13 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Hash function definition



Let us check this with a real-world hash function

SHAKE128 is one of the hash functions defined in the NIST SHA-3
standard
Let us apply SHAKE to the message “Security: interesting!”

SHAKE
(
“Security: interesting!”

)
= 336113159061d2163feaf7ae12ddad58

If we change a detail:

SHAKE
(
“Security: interesting?”

)
= 6548b7e6db8f86ae7f9e6d020698c5aa

We can also apply it to a file, e.g.

SHAKE
(
symmetric.tex

)
= ec02b28d5949acc3ecbaca71a10e3871

Page 14 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Hash function definition

Hash yourself!

On a (linux) command line you can run your own hash, e.g., as:
I sha256sum file
I openssl sha256 file
SHA256 is one of the hash functions defined in the NIST SHA-2 standard

Using Python
I install Python
I get CompactFIPS202.py and SHAKE.py from the security homepage
I on command line type python SHAKE.py file

With Python built-in hashing (versions ≥ 3.6 also supports SHAKE128)
> import hashlib
> h = hashlib.new("md5")
> h.update(b"Hash that string")
> print(h.hexdigest())

Page 15 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Hash function definition

Coin-tossing by email

I Suppose Alice and Bob want to agree by email who’s cooking
tonight, using coins

I They each toss a coin that is heads (0) or tails (1)
• Outcome of Alice: CA

• Outcome of Bob: CB

I They agree:
• if the outcomes are equal, Alice prepares the dinner
• otherwise Bob does

How to do this securely, without the possibility to cheat?
(and without a trusted third party, TTP)

Page 17 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Applications and expected properties

Coin-tossing by email: hash-based protocol

Assume a hash function h

Commitment phase

A −→ B : ZA = h(CA‖NA‖1) with NA randomly generated by A
B −→ A : ZB = h(CB‖NB‖0) with NB randomly generated by B

Revealing phase

A −→ B : CA,NA B checks honesty of A : ZA
?
= h(CA‖NA‖1)

B −→ A : CB ,NB A checks honesty of B : ZB
?
= h(CB‖NB‖0)

After this 4-email protocol both can check CA
?
= CB and arrange dinner

Page 18 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Applications and expected properties



Coin-tossing by email: requirements

I B cannot derive CA from ZA

• NA shall be unpredictable
• having h(CA‖NA‖1) shall not help in finding CA

• This is a kind of one-way property
• This requirement is called preimage resistance

I A cannot find NA,N
′
A, with h(0‖NA‖1) = h(1‖N ′A‖1)

• This requirement is called collision-resistance
• Collisions may exist if ZA is shorter than NA

• Finding collision shall be computationally infeasible

h is collision-resistant if it is infeasible to find m,m′ with m 6= m′ and
h(m) = h(m′)

Page 19 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Applications and expected properties

Message compression for signing

Setting:

I Bob signs a contract, say in the form of a pdf document

I Classical procedure:
• Bob inspects the contract on his PC
• If he agrees, he prints the contract
• . . . and puts a signature (with ink) on each page

I We want to make this more user-friendly with a modern procedure:
• Bob inspects the contract on his PC
• If he agrees, he asks the PC to compute a hash over it
• he prints the hash (fits on one page)
• . . . and puts a signature (with ink) on it
• we call this the paper commitment

Page 20 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Applications and expected properties

Message compression for signing: requirements I

Setting

I Alice agrees to buy house from Bob for 300K Euro

I Alice puts this in a contract m and sends to Bob for approval

I When Bob sees the contract and it is OK, they compute a hash over
it and print it

I Alice and Bob arrange for a meeting with the Notary

• Both Alice and Bob check the correctness of the printed hash

• All three sign it and the Notary puts it in his archive

• The paper commitment is now the legally binding document

I In case of conflict, Alice or Bob can reveal the contract m and the
Notary can verify its validity

Page 21 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Applications and expected properties

Message compression for signing: requirements II

Outsider attack

I Upon receipt of m, Bob builds m′ with h(m) = h(m′)

I m′ states 500K Euro instead of 300K Euro

I Paper commitment is also valid for m′

I If Alice does not pay, Bob can sue him using m′ and paper
commitment as evidence

The required property is called second preimage resistance
I given m, finding m′ with h(m′) = h(m) shall be infeasible

Page 22 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Applications and expected properties



Message compression for signing: requirements III

Insider attack
I In advance, Alice builds m and m′ with h(m) = h(m′)

I m states 300K Euro, m′ states 100K Euro
I The paper commitment is now also valid for m′

I If Bob does not sell for 100K, Alice can sue him with m′ and paper
commitment as evidence

The required property is collision-resistance:
I Finding m and m′ with m 6= m′ and h(m′) = h(m) shall be infeasible

Notes:
I collision-resistance implies 2nd preimage resistance but not vice versa
I which one is needed depends on the attack scenario

Page 23 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Applications and expected properties

Recap: the three traditional hash function
requirements

Preimage resistance
Given z finding a message m with h(m) = z shall be infeasible

Second preimage resistance
Given m, finding a message m′ with m′ 6= m and h(m′) = h(m) shall be
infeasible

Collision resistance
Finding m and m′ with m 6= m′ and h(m′) = h(m) shall be infeasible

Page 24 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Applications and expected properties

Password protection on servers I

It is not wise to store user passwords on a server in the clear:

I other users (administrators) may abuse them

I hackers may break into the server and get them

I google for password leakage

Good solution: replace passwords by actual cryptography

Usual solution: store hashes of passwords

Page 25 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Applications and expected properties

Hashed password storage

The password file on the server looks like this:

user password hash
bart h

(
passwd1

)
peter h

(
passwd2

)
...

...

I When a user logs on with his password, the server computes the
hash and compares it to the data base entry of the user

I hash function requirement: given h(m), it is hard to find m:
preimage resistance

Page 26 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Applications and expected properties



Password protection on servers II

What can a hacker do with such a password file?

user password hash
bart h

(
passwd1

)
peter h

(
passwd2

)
...

...

Dictionary attack: hashing plausible passwords until we have a match
I try words from dictionary and common names: extremely fast
I if password policies apply: build passwords from a dictionary

combined with numbers, special characters and capitalization: very
fast

I try all combination of characters up to some length (e.g. 8): fast
I for reasonable protection: original passphrases of sufficient length
see https://youtu.be/7U-RbOKanYs

Page 27 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Applications and expected properties

Password protection on servers II

What can a hacker do with such a password file?

user password hash
bart h

(
passwd1

)
peter h

(
passwd2

)
...

...

Attention point: multi-target aspect
I h

(
passwdGuess

)
can hit any entry in the file

I success probability increases with number of entries
I probability of bad passwords increases with number of entries

Page 28 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Applications and expected properties

Password protection: diversification

I Preventing multi-target aspect by diversifying hash input
I Username-based:
• include unique username in hash input: h

(
username;passwd

)
• attempt must be of the form h

(
username;passwdGuess

)
• so each attempt is dedicated to a single user’s password
• prevent collisions between usernames on different servers:

include servername, e.g., URL
• prevent leakage of users cycling between passwords: include

password serial number

Page 29 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Applications and expected properties

Password protection: salting

I Preventing multi-target aspect by diversifying hash input
I Salt-based:
• include random salt per user: h

(
salt;passwd

)
• if salt is unique per user: same effect as username-based
• most commonly used, mostly for historical reasons
A salted password file looks like this:

user salt hash
bart bla h

(
bla, passwd

)
peter aap h

(
aap, passwd

)
...

...
...

Most commonly used — but not by LinkedIn, as became clear when its
database of 6.5M logins leaked in June 2012.

Page 30 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Applications and expected properties

https://youtu.be/7U-RbOKanYs


Intermezzo: domain separation

I Salting is an application of domain separation

I Hash function h can be used to build two hash functions h0 and h1:
• h0(M) = h(M‖0)
• h1(M) = h(M‖1)
• if h is ideal, both h0 and h1 are ideal

I Generalization: hash function can be used to build 2n hash functions
• ha(M) = h(M‖a)
• with a any n-bit string

I many protocols fail due to lack of domain separation

Page 31 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Applications and expected properties

Password protection: key stretching

I Described attacks are economical because hashing is cheap

• designed for speed: desirable in most applications
• cost decreases over time due to Moore’s law
• plus: dedicated hardware for hashing (due to Bitcoin, see later)

I Strength of password may reduce from 10K Euro in 2005 to < 10
Euro in 2020

I Approach: artificially slow down the hashing: key stretching
I Traditional solution: storing xN computed as

x0 = 0 and xi+1 = h(xi‖password‖salt).

I Modern solution: have dedicated resource-hungry hash functions
• result of open contest: https://password-hashing.net/
• principle: cost/hash shall not decrease with increasing resources

I Balance between convenience (latency) and security (cracking cost)

Page 32 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Applications and expected properties

Hash application: integrity check

I Suppose you run out of disk space and wish to store a large file m
“in the cloud” — so on someone else’s computer — but you worry
about (detecting) integrity violations

I The solution is:
• store m remotely
• keep Z = h(m) locally

I After retrieving the file, say m′, verify h(m′)
?
= Z

• if h(m′) = Z , you know m′ = m
• . . . unless someone found m′ with h(m′) = h(m)
• this requires 2nd preimage resistance

I The same technique is used in other situations, e.g.
• downloading software (hash must be stored elsewhere, or be signed)
• ensuring integrity of evidence in forensic investigation, etc.
• trusted platform module (TPM) (see later)

Page 33 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Applications and expected properties

Originality claim for banned publication

���� �������

���������� �����

����� ����� ������� �����

���������������������������������
���������������������������������
���������������������������������
��������������������������������

Last slide of Roel Verdult’s Usenix Aug’2013 presentation, after forced
withdrawal of the paper on Megamos Chip vulnerabilities. Article was
finally published in 2015

Application requires preimage resistance

Page 34 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Applications and expected properties

https://password-hashing.net/


The traditional hash function requirements,
quantified

Traditionally, from an n-bit cryptographic hash function h one expects
the following security strength:
(1) preimage resistance: given a string x , finding an m with h(m) = x

shall have expected cost 2n hash function computations

(2) second preimage resistance: given m, finding m′ 6= m with
h(m) = h(m′) shall have expected cost 2n hash function
computations

(3) collision resistance: finding any pair m 6= m′ with h(m) = h(m′)
shall have expected cost 2n/2 hash function computations

These cost measures are the ones realized by an ideal hash function

Collision resistance is only 2n/2: so-called birthday bound

Page 35 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Applications and expected properties

Birthday paradox

In a group of 23, the chance that two have same birthday is above 1
2

I Surprising . . . at first sight
I Let’s study it: build group by add 1 person at a time
• 1 person A: probability of birthday clash is 0
• Add B: probability that it clashes with A is 1/365
• Add C : probability that it clashes with A or with B is 2/365
• Add i-th person: probability it clashes with one i − 1 is

(i − 1)/365
I Probability of a birthday clash for i people is sum of all these:

1+ 2+ 3 . . . i − 1
365

=
(1+ i − 1) + (2+ i − 2) . . .

365
=

i(i − 1)
2 ∗ 365

I This becomes equal to 1/2 when i(i − 1)/(2 ∗ 365) ≈ 1/2 or
i ≈
√
365

Page 36 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Applications and expected properties

Birthday paradox (once more, with precision)

This slide is for information only!
I Let us compute the probability of non-collision
I Build group by add 1 person at a time
• 1 person A: prob. of no clash is 1
• Add B: prob. of no clash with A is 1− 1/365
• Add C : prob. of no clash with A or with B is 1− 2/365
• Add i : prob. of no clash is 1− (i − 1)/365

I Probability of no clash is product. Using 1− ε ≈ e−ε:

i∏
j=1

(
1− j

365

)
≈

i∏
j=1

e−
j

365 = e−
i(i−1)
2×365

Setting this equal to 1/2 gives i(i − 1)/2 ∗ 365 = ln(2) or
i(i − 1) ≈ 506 = 23× 22.

Page 37 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Applications and expected properties

Collision probability

In a set of i hashes, the chance that two are equal is about i2/2n+1

I Same reasoning as birthday paradox:
• we assume random hashes instead of random birthdays
• domain size: 2n instead of 365

I i2/2n+1 becomes close to 1/2 if i2 ≈ 2n so:

Collision-resistance
The expected effort for finding a collision in a secure n-bit cryptographic
hash function is close to

√
2n = 2n/2 hash function evaluations.

Page 38 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Applications and expected properties



MD5 and standards SHA-1 and SHA-2

I MD5 [Ron Rivest, 1991]
• based on MD4 that was an original design
• 128-bit digest
• Became de facto standard due to adoption by Silicon Valley

I SHA-1 [NIST, 1995] (after SHA-0 [NIST, 1993])
• designed at NSA, mostly an improved version of MD5
• SHA stands for Secure Hash Algorithm
• 160-bit digest

I SHA-2 series [NIST, 2001 and 2008]
• reinforced versions of SHA-1, again coming from NSA
• 6 functions with 224-, 256-, 384- and 512-bit digest

Page 40 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Legacy hash function standards

The MD5 saga

I 1993: weaknesses shown in internal building blocks
I 2003-2004: great advances in analysis of MD5
I 2004: actual collisions for MD5 found by Prof. Wang
I despite weaknesses, corporate IT co. unwilling to abandon MD5
• yes, but these weaknesses are just theoretical

I 2005: Lenstra, Wang, and de Weger generate fake TLS certificates
I 2008: Nostradamus attack (next slide)
I 2010-2012: Espionage malware Flame creates fake Microsoft update

certificates.
I Today MD5 largely replaced by SHA-256 but not everywhere

I Lessons learnt
• in retrospect MD5 is a very weak hash function
• put in the field (internet) without considering public scrutiny

Page 41 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Legacy hash function standards

Nostradamus attack with MD5

In 2008, before the US-presidential elections, 3 Dutch researchers
(M. Stevens, A. Lenstra, B. de Weger) constructed 2 different messages:

m1 = · · · Obama will be the next president · · ·

m2 = · · · McCain will be the next president · · ·

with the same hash: md5(m1) = md5(m2).

They published this hash and claimed that they could predict the future!
See www.win.tue.nl/hashclash/Nostradamus

Page 42 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Legacy hash function standards

Security of SHA-1 and the SHA-2 functions

I SHA-1
• 2004-2007: theoretical collision attacks in effort ≈ 261

• 2017: Marc Stevens (CWI, Amsterdam) et al. do it
• Collisions explained at https://shattered.io/
• broken but not as bad as MD5

I SHA-2 series: still a solid safety margin despite public scrutiny
• suffer from theoretical problem: length extension weakness
• like MD5 and SHA-1 did

Length extension weakness
A hash function h(·) has the length extension weakness if it is feasible to
compute h(m‖m′) knowing only h(m) and m′

Page 43 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Legacy hash function standards

www.win.tue.nl/hashclash/Nostradamus
https://shattered.io/


Constructing a MAC function from MD5, SHA-1
or SHA-2

The HMAC authentication mode [FIPS 197]:

I HMAC makes two (keyed) calls to the underlying hash function
I A single call would make forgery trivially easy due to the

length-extension property

Page 44 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Legacy hash function standards

Generating a stream (cipher) with MD5, SHA-1 or
SHA-2

In many applications we need a long hash output
I when used for deriving multiple keys (SSL, TLS, see later)
I when using for keystream generation, . . .

The mode MGF1 [PKCS #1]:

Stream cipher by taking m = K‖D with D the diversifier
I Zi = hi = h(K‖D‖i)
I this is similar to counter mode of a block cipher

Page 45 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Legacy hash function standards

SHA-3: the competition

I 2005-2006: MD5 and SHA-1 crisis
I 2008: NIST kicks off the open SHA-3 competition
I Requirements
• more efficient than SHA-2
• output lengths: 224, 256, 384, 512 bits
• traditional collision and (2nd) pre-image resistance required
• specs, code, design rationale and preliminary analysis
• patent waiver

I Three-round public process
• round 1: 64 submissions, 51 accepted
• round 2: 14 semi-finalists
• round 3: 5 finalists

I October 2012: NIST announces Keccak as SHA-3 winner
designed by [Bertoni, Daemen, Peeters, Van Assche, 2007]

I August 2015: NIST publishes the SHA-3 standard: FIPS 202

Page 47 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
The SHA-3 standard

The SHA-3 standard: FIPS 202

I Length extension problem has been fixed
I FIPS 202 specifies 6 functions in total, all independent
I Four hash functions with same output lengths as SHA-2 equivalents
• SHA3-224
• SHA3-256
• SHA3-384
• SHA3-512

I novelty: extendable output functions (XOF)
• hash function that can generate output of arbitrary length
• user determines output length

I Two XOFs:
• SHAKE128: XOF with inherent security strength of 128 bits
• SHAKE256: XOF with inherent security strength of 256 bits

I Designers recommend using SHAKE128 for everything

Page 48 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
The SHA-3 standard



XOF schematic and security

Informal definition of XOF security
A XOF h(·) has an inherent security strength s if it offers the same
resistance as an ideal hash function against attacks with workload below
2s computations

Security strength of a XOF is determined by an internal design parameter
usually called capacity

Page 49 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
The SHA-3 standard

Constructing a MAC function from SHAKE128

Just take as input concatenation of key K and message m

F (K ,M) constructed as XOF(K‖M)

Truncate output to desired MAC length

Page 50 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
The SHA-3 standard

Constructing a stream cipher from SHAKE128

Just take as input concatenation of key K and diversifier D

F (K ,D) constructed as XOF(K‖D)

Use output as keystream, as long as you need

Page 51 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
The SHA-3 standard

Conclusions

I Hash functions are versatile: compression, encryption, MAC, key
derivation . . .

I A hash function is secure if it behaves like Random Oracle Inc. For
n-bit output:
• generating (2nd) pre-image takes 2n hash attempts
• generating collision takes 2n/2 hash attempts

I Multiple hash functions from a single one by domain separation
I Legacy standard hash functions
• MD5 and NIST standard SHA-1: broken
• SHA-2: same philosophy, but still very solid

I SHA-3:
• very solid
• one function for all output lengths: SHAKE128
• simplification of modes of use

Page 52 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
The SHA-3 standard


	Hash function definition
	Applications and expected properties
	Legacy hash function standards
	The SHA-3 standard

