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Hash function definition

A cryptographic hash function h takes a message m of arbitrary length
and yields an outcome h(m) of fixed length

h : {0, 1}? −→ 2N typical values for N = 160, 256, 512

I h(m) is called the hash (value) of m. Alternative names:
• message digest
• (cryptographic) fingerprint
• verhaspelingsfunctie (please never use this term)
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Hash function schematic and security

(Sketchy) definition of hash function security
A hash function h(·) is secure if every bit of h(m) depends in a
complicated way of all bits of m

A secure cryptographic hash function is a very useful primitive . . .
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The letter-answering company Random Oracle Inc.

What would the ideal cryptographic hash function look like?

Let us do a thought experiment

Random Oracle Inc.: letter answering service!
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Random Oracle Inc.

1. Message m arrives at Random Oracle Inc.
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Random Oracle Inc.

2a. If m was received earlier, manager picks it from archive. Its file will
also contain the returned response z
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Random Oracle Inc.

2b. If not in archive, employee will (randomly) generate response z
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Random Oracle Inc.

3. Manager copies response z , from archive (2a) or freshly typed (2b)
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Random Oracle Inc.

4. Manager puts file with (m, z) (back) in archive
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Random Oracle Inc.

5. Manager sends response z by courier to sender of m

A hash function h is secure if it behaves as Random Oracle Inc.
I Always return same result h(m) for same message m
I Results h(m) and h(m′) if m 6= m′ look random and unrelated
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Hash function schematic and security (update)

Informal definition of hash function security
A hash function h(·) is secure if hash results h(m) look random with no
apparent relation with their input m
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Let us check this with a real-world hash function

SHAKE128 is one of the hash functions defined in the NIST SHA-3
standard
Let us apply SHAKE to the message “Security: interesting!”

SHAKE
(
“Security: interesting!”

)
= 336113159061d2163feaf7ae12ddad58

If we change a detail:

SHAKE
(
“Security: interesting?”

)
= 6548b7e6db8f86ae7f9e6d020698c5aa

We can also apply it to a file, e.g.

SHAKE
(
symmetric.tex

)
= ec02b28d5949acc3ecbaca71a10e3871
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Hash yourself!

On a (linux) command line you can run your own hash, e.g., as:
I sha256sum file
I openssl sha256 file
SHA256 is one of the hash functions defined in the NIST SHA-2 standard

Using Python
I install Python
I get CompactFIPS202.py and SHAKE.py from the security homepage
I on command line type python SHAKE.py file

With Python built-in hashing (versions ≥ 3.6 also supports SHAKE128)
> import hashlib
> h = hashlib.new("md5")
> h.update(b"Hash that string")
> print(h.hexdigest())
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Coin-tossing by email

I Suppose Alice and Bob want to agree by email who’s cooking
tonight, using coins

I They each toss a coin that is heads (0) or tails (1)
• Outcome of Alice: CA

• Outcome of Bob: CB

I They agree:
• if the outcomes are equal, Alice prepares the dinner
• otherwise Bob does

How to do this securely, without the possibility to cheat?
(and without a trusted third party, TTP)
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Coin-tossing by email: hash-based protocol

Assume a hash function h

Commitment phase

A −→ B : ZA = h(CA‖NA‖1) with NA randomly generated by A
B −→ A : ZB = h(CB‖NB‖0) with NB randomly generated by B

Revealing phase

A −→ B : CA,NA B checks honesty of A : ZA
?
= h(CA‖NA‖1)

B −→ A : CB ,NB A checks honesty of B : ZB
?
= h(CB‖NB‖0)

After this 4-email protocol both can check CA
?
= CB and arrange dinner

Page 18 of 52 Jacobs and Daemen Version: fall 2017 Computer Security
Applications and expected properties



Coin-tossing by email: requirements

I B cannot derive CA from ZA

• NA shall be unpredictable
• having h(CA‖NA‖1) shall not help in finding CA

• This is a kind of one-way property
• This requirement is called preimage resistance

I A cannot find NA,N
′
A, with h(0‖NA‖1) = h(1‖N ′A‖1)

• This requirement is called collision-resistance
• Collisions may exist if ZA is shorter than NA

• Finding collision shall be computationally infeasible

h is collision-resistant if it is infeasible to find m,m′ with m 6= m′ and
h(m) = h(m′)
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Message compression for signing

Setting:

I Bob signs a contract, say in the form of a pdf document

I Classical procedure:
• Bob inspects the contract on his PC
• If he agrees, he prints the contract
• . . . and puts a signature (with ink) on each page

I We want to make this more user-friendly with a modern procedure:
• Bob inspects the contract on his PC
• If he agrees, he asks the PC to compute a hash over it
• he prints the hash (fits on one page)
• . . . and puts a signature (with ink) on it
• we call this the paper commitment
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Message compression for signing: requirements I

Setting

I Alice agrees to buy house from Bob for 300K Euro

I Alice puts this in a contract m and sends to Bob for approval

I When Bob sees the contract and it is OK, they compute a hash over
it and print it

I Alice and Bob arrange for a meeting with the Notary

• Both Alice and Bob check the correctness of the printed hash

• All three sign it and the Notary puts it in his archive

• The paper commitment is now the legally binding document

I In case of conflict, Alice or Bob can reveal the contract m and the
Notary can verify its validity
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Message compression for signing: requirements II

Outsider attack

I Upon receipt of m, Bob builds m′ with h(m) = h(m′)

I m′ states 500K Euro instead of 300K Euro

I Paper commitment is also valid for m′

I If Alice does not pay, Bob can sue him using m′ and paper
commitment as evidence

The required property is called second preimage resistance
I given m, finding m′ with h(m′) = h(m) shall be infeasible
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Message compression for signing: requirements III

Insider attack
I In advance, Alice builds m and m′ with h(m) = h(m′)

I m states 300K Euro, m′ states 100K Euro
I The paper commitment is now also valid for m′

I If Bob does not sell for 100K, Alice can sue him with m′ and paper
commitment as evidence

The required property is collision-resistance:
I Finding m and m′ with m 6= m′ and h(m′) = h(m) shall be infeasible

Notes:
I collision-resistance implies 2nd preimage resistance but not vice versa
I which one is needed depends on the attack scenario
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Recap: the three traditional hash function
requirements

Preimage resistance
Given z finding a message m with h(m) = z shall be infeasible

Second preimage resistance
Given m, finding a message m′ with m′ 6= m and h(m′) = h(m) shall be
infeasible

Collision resistance
Finding m and m′ with m 6= m′ and h(m′) = h(m) shall be infeasible
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Password protection on servers I

It is not wise to store user passwords on a server in the clear:

I other users (administrators) may abuse them

I hackers may break into the server and get them

I google for password leakage

Good solution: replace passwords by actual cryptography

Usual solution: store hashes of passwords
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Hashed password storage

The password file on the server looks like this:

user password hash
bart h

(
passwd1

)
peter h

(
passwd2

)
...

...

I When a user logs on with his password, the server computes the
hash and compares it to the data base entry of the user

I hash function requirement: given h(m), it is hard to find m:
preimage resistance
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Password protection on servers II

What can a hacker do with such a password file?

user password hash
bart h

(
passwd1

)
peter h

(
passwd2

)
...

...

Dictionary attack: hashing plausible passwords until we have a match
I try words from dictionary and common names: extremely fast
I if password policies apply: build passwords from a dictionary

combined with numbers, special characters and capitalization: very
fast

I try all combination of characters up to some length (e.g. 8): fast
I for reasonable protection: original passphrases of sufficient length
see https://youtu.be/7U-RbOKanYs
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Password protection on servers II

What can a hacker do with such a password file?

user password hash
bart h

(
passwd1

)
peter h

(
passwd2

)
...

...

Attention point: multi-target aspect
I h

(
passwdGuess

)
can hit any entry in the file

I success probability increases with number of entries
I probability of bad passwords increases with number of entries
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Password protection: diversification

I Preventing multi-target aspect by diversifying hash input
I Username-based:
• include unique username in hash input: h

(
username;passwd

)
• attempt must be of the form h

(
username;passwdGuess

)
• so each attempt is dedicated to a single user’s password
• prevent collisions between usernames on different servers:

include servername, e.g., URL
• prevent leakage of users cycling between passwords: include

password serial number
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Password protection: salting

I Preventing multi-target aspect by diversifying hash input
I Salt-based:
• include random salt per user: h

(
salt;passwd

)
• if salt is unique per user: same effect as username-based
• most commonly used, mostly for historical reasons
A salted password file looks like this:

user salt hash
bart bla h

(
bla, passwd

)
peter aap h

(
aap, passwd

)
...

...
...

Most commonly used — but not by LinkedIn, as became clear when its
database of 6.5M logins leaked in June 2012.
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https://youtu.be/7U-RbOKanYs


Intermezzo: domain separation

I Salting is an application of domain separation

I Hash function h can be used to build two hash functions h0 and h1:
• h0(M) = h(M‖0)
• h1(M) = h(M‖1)
• if h is ideal, both h0 and h1 are ideal

I Generalization: hash function can be used to build 2n hash functions
• ha(M) = h(M‖a)
• with a any n-bit string

I many protocols fail due to lack of domain separation
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Password protection: key stretching

I Described attacks are economical because hashing is cheap

• designed for speed: desirable in most applications
• cost decreases over time due to Moore’s law
• plus: dedicated hardware for hashing (due to Bitcoin, see later)

I Strength of password may reduce from 10K Euro in 2005 to < 10
Euro in 2020

I Approach: artificially slow down the hashing: key stretching
I Traditional solution: storing xN computed as

x0 = 0 and xi+1 = h(xi‖password‖salt).

I Modern solution: have dedicated resource-hungry hash functions
• result of open contest: https://password-hashing.net/
• principle: cost/hash shall not decrease with increasing resources

I Balance between convenience (latency) and security (cracking cost)
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Hash application: integrity check

I Suppose you run out of disk space and wish to store a large file m
“in the cloud” — so on someone else’s computer — but you worry
about (detecting) integrity violations

I The solution is:
• store m remotely
• keep Z = h(m) locally

I After retrieving the file, say m′, verify h(m′)
?
= Z

• if h(m′) = Z , you know m′ = m
• . . . unless someone found m′ with h(m′) = h(m)
• this requires 2nd preimage resistance

I The same technique is used in other situations, e.g.
• downloading software (hash must be stored elsewhere, or be signed)
• ensuring integrity of evidence in forensic investigation, etc.
• trusted platform module (TPM) (see later)
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Originality claim for banned publication
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Last slide of Roel Verdult’s Usenix Aug’2013 presentation, after forced
withdrawal of the paper on Megamos Chip vulnerabilities. Article was
finally published in 2015

Application requires preimage resistance
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The traditional hash function requirements,
quantified

Traditionally, from an n-bit cryptographic hash function h one expects
the following security strength:
(1) preimage resistance: given a string x , finding an m with h(m) = x

shall have expected cost 2n hash function computations

(2) second preimage resistance: given m, finding m′ 6= m with
h(m) = h(m′) shall have expected cost 2n hash function
computations

(3) collision resistance: finding any pair m 6= m′ with h(m) = h(m′)
shall have expected cost 2n/2 hash function computations

These cost measures are the ones realized by an ideal hash function

Collision resistance is only 2n/2: so-called birthday bound
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Birthday paradox

In a group of 23, the chance that two have same birthday is above 1
2

I Surprising . . . at first sight
I Let’s study it: build group by add 1 person at a time
• 1 person A: probability of birthday clash is 0
• Add B: probability that it clashes with A is 1/365
• Add C : probability that it clashes with A or with B is 2/365
• Add i-th person: probability it clashes with one i − 1 is

(i − 1)/365
I Probability of a birthday clash for i people is sum of all these:

1+ 2+ 3 . . . i − 1
365

=
(1+ i − 1) + (2+ i − 2) . . .

365
=

i(i − 1)
2 ∗ 365

I This becomes equal to 1/2 when i(i − 1)/(2 ∗ 365) ≈ 1/2 or
i ≈
√
365
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Birthday paradox (once more, with precision)

This slide is for information only!
I Let us compute the probability of non-collision
I Build group by add 1 person at a time
• 1 person A: prob. of no clash is 1
• Add B: prob. of no clash with A is 1− 1/365
• Add C : prob. of no clash with A or with B is 1− 2/365
• Add i : prob. of no clash is 1− (i − 1)/365

I Probability of no clash is product. Using 1− ε ≈ e−ε:

i∏
j=1

(
1− j

365

)
≈

i∏
j=1

e−
j

365 = e−
i(i−1)
2×365

Setting this equal to 1/2 gives i(i − 1)/2 ∗ 365 = ln(2) or
i(i − 1) ≈ 506 = 23× 22.
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Collision probability

In a set of i hashes, the chance that two are equal is about i2/2n+1

I Same reasoning as birthday paradox:
• we assume random hashes instead of random birthdays
• domain size: 2n instead of 365

I i2/2n+1 becomes close to 1/2 if i2 ≈ 2n so:

Collision-resistance
The expected effort for finding a collision in a secure n-bit cryptographic
hash function is close to

√
2n = 2n/2 hash function evaluations.
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MD5 and standards SHA-1 and SHA-2

I MD5 [Ron Rivest, 1991]
• based on MD4 that was an original design
• 128-bit digest
• Became de facto standard due to adoption by Silicon Valley

I SHA-1 [NIST, 1995] (after SHA-0 [NIST, 1993])
• designed at NSA, mostly an improved version of MD5
• SHA stands for Secure Hash Algorithm
• 160-bit digest

I SHA-2 series [NIST, 2001 and 2008]
• reinforced versions of SHA-1, again coming from NSA
• 6 functions with 224-, 256-, 384- and 512-bit digest
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The MD5 saga

I 1993: weaknesses shown in internal building blocks
I 2003-2004: great advances in analysis of MD5
I 2004: actual collisions for MD5 found by Prof. Wang
I despite weaknesses, corporate IT co. unwilling to abandon MD5
• yes, but these weaknesses are just theoretical

I 2005: Lenstra, Wang, and de Weger generate fake TLS certificates
I 2008: Nostradamus attack (next slide)
I 2010-2012: Espionage malware Flame creates fake Microsoft update

certificates.
I Today MD5 largely replaced by SHA-256 but not everywhere

I Lessons learnt
• in retrospect MD5 is a very weak hash function
• put in the field (internet) without considering public scrutiny
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Nostradamus attack with MD5

In 2008, before the US-presidential elections, 3 Dutch researchers
(M. Stevens, A. Lenstra, B. de Weger) constructed 2 different messages:

m1 = · · · Obama will be the next president · · ·

m2 = · · · McCain will be the next president · · ·

with the same hash: md5(m1) = md5(m2).

They published this hash and claimed that they could predict the future!
See www.win.tue.nl/hashclash/Nostradamus
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Security of SHA-1 and the SHA-2 functions

I SHA-1
• 2004-2007: theoretical collision attacks in effort ≈ 261

• 2017: Marc Stevens (CWI, Amsterdam) et al. do it
• Collisions explained at https://shattered.io/
• broken but not as bad as MD5

I SHA-2 series: still a solid safety margin despite public scrutiny
• suffer from theoretical problem: length extension weakness
• like MD5 and SHA-1 did

Length extension weakness
A hash function h(·) has the length extension weakness if it is feasible to
compute h(m‖m′) knowing only h(m) and m′
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www.win.tue.nl/hashclash/Nostradamus
https://shattered.io/


Constructing a MAC function from MD5, SHA-1
or SHA-2

The HMAC authentication mode [FIPS 197]:

I HMAC makes two (keyed) calls to the underlying hash function
I A single call would make forgery trivially easy due to the

length-extension property
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Generating a stream (cipher) with MD5, SHA-1 or
SHA-2

In many applications we need a long hash output
I when used for deriving multiple keys (SSL, TLS, see later)
I when using for keystream generation, . . .

The mode MGF1 [PKCS #1]:

Stream cipher by taking m = K‖D with D the diversifier
I Zi = hi = h(K‖D‖i)
I this is similar to counter mode of a block cipher
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SHA-3: the competition

I 2005-2006: MD5 and SHA-1 crisis
I 2008: NIST kicks off the open SHA-3 competition
I Requirements
• more efficient than SHA-2
• output lengths: 224, 256, 384, 512 bits
• traditional collision and (2nd) pre-image resistance required
• specs, code, design rationale and preliminary analysis
• patent waiver

I Three-round public process
• round 1: 64 submissions, 51 accepted
• round 2: 14 semi-finalists
• round 3: 5 finalists

I October 2012: NIST announces Keccak as SHA-3 winner
designed by [Bertoni, Daemen, Peeters, Van Assche, 2007]

I August 2015: NIST publishes the SHA-3 standard: FIPS 202
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The SHA-3 standard: FIPS 202

I Length extension problem has been fixed
I FIPS 202 specifies 6 functions in total, all independent
I Four hash functions with same output lengths as SHA-2 equivalents
• SHA3-224
• SHA3-256
• SHA3-384
• SHA3-512

I novelty: extendable output functions (XOF)
• hash function that can generate output of arbitrary length
• user determines output length

I Two XOFs:
• SHAKE128: XOF with inherent security strength of 128 bits
• SHAKE256: XOF with inherent security strength of 256 bits

I Designers recommend using SHAKE128 for everything
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XOF schematic and security

Informal definition of XOF security
A XOF h(·) has an inherent security strength s if it offers the same
resistance as an ideal hash function against attacks with workload below
2s computations

Security strength of a XOF is determined by an internal design parameter
usually called capacity
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Constructing a MAC function from SHAKE128

Just take as input concatenation of key K and message m

F (K ,M) constructed as XOF(K‖M)

Truncate output to desired MAC length
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Constructing a stream cipher from SHAKE128

Just take as input concatenation of key K and diversifier D

F (K ,D) constructed as XOF(K‖D)

Use output as keystream, as long as you need
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Conclusions

I Hash functions are versatile: compression, encryption, MAC, key
derivation . . .

I A hash function is secure if it behaves like Random Oracle Inc. For
n-bit output:
• generating (2nd) pre-image takes 2n hash attempts
• generating collision takes 2n/2 hash attempts

I Multiple hash functions from a single one by domain separation
I Legacy standard hash functions
• MD5 and NIST standard SHA-1: broken
• SHA-2: same philosophy, but still very solid

I SHA-3:
• very solid
• one function for all output lengths: SHAKE128
• simplification of modes of use
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