
Computer Security: Public
Key Crypto
B. Jacobs and J. Daemen
Institute for Computing and Information Sciences – Digital Security
Radboud University Nijmegen
Version: fall 2017

Page 1 of 136 Jacobs and Daemen Version: fall 2017 Computer Security

Outline

Problems in key management
Public key crypto
Math basics for public-key cryptography
The RSA cryptosystem
Rolling out public key cryptography

Public key authentication
DigiNotar case study
On electronic signatures

Discrete-log based cryptography
Diffie-Hellman key exchange
El Gamal encryption and DSA signature
Elliptic curves

Public key protocols
Blind signatures

Page 2 of 136 Jacobs and Daemen Version: fall 2017 Computer Security

The blessings of crypto

Using crypto . . .

I Alice can protect her private data

I Alice and Bob can set up a secure channel
• ensure confidentiality of content
• ensure authenticity of messages
• with respect to any adversary Eve
• over any communication medium

I GlobalCorp. Inc. can protect its business
• secure financial transactions
• hide customer database from competitors
• patch its products in the field for security/functionality
• protect intellectual property in software, media, etc.
• enforce its monopoly on games/accessories/etc.

Page 4 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Problems in key management

The curse of crypto

I Alice and Bob need to share a secret cryptographic key
I GlobalCorp. Inc. needs to roll out many cryptographic keys
I . . . in a way such that Eve cannot get her hands on them
I The security is only as good as the secrecy of these keys

Important lesson:
I Cryptography does not solve problems, but only reduces them to . . .
• securely generating cryptographic keys
• securely establishing or rolling out cryptographic keys
• keeping the keys out of Eve’s hands

Page 5 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Problems in key management

Key establishment

How do Alice and Bob establish a shared secret?

I When they physically meet:
• exchange on a piece of paper or business card (unique pairs)
• on a USB stick: requires trust in stick and PC/smartphone
• but all cryptography requires trust in devices!

I When they don’t meet it is harder. Two cases:
• there is a common and trusted friend: TTP
• no such friend

I For GlobalCorp. Inc. key management is much harder
• Eve is ubiquitous
• keys must be protected in the field

Page 6 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Problems in key management

Remote key establishment w/o trusted third party

I Tamper-evident physically unclonable envelopes
• tamper-evident: you cannot open it without leaving traces
• unclonable: cannot fabricate one looking the same

I Sending by secure envelope:
• Alice sticks a 5 Euro banknote on the envelope with superglue
• Alice writes down the serial number of the banknote
• Alice sends a key K to Bob in the envelope
• upon receipt Bob checks that the envelope has not been opened
• Bob calls Alice and they check the banknote’s serial number
• Bob gets the key K from the envelope

Expensive and time-consuming

Page 7 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Problems in key management

Keys management challenges for GlobalCorp. Inc.

Some examples

I Bank: getting keys in all banking cards
I Microsoft: getting software verification key in all PCs
I Spotify or NetFlix: getting keys in user PC/laptop/smartphones
I Government: getting keys in ID cards and travel passports
I More complex eco-systems
• WWW: establishing keys between User PCs and internet sites
• Public sector: keys in OV-Chipkaart and readers
• Mobile phone: ensuring billing and confidentiality while roaming

I etc.

Public Key cryptography to the rescue!

Page 8 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Problems in key management

Public key crypto wish list

It would be nice to:

I Authenticate an entity without sharing a key with that entity

I Authenticate documents without writer’s secret key:
• Electronic Signatures!

I Set up a key remotely without the need for secret channel

Public key cryptography can do all that!

. . . and much more

Page 10 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Public key crypto

Public key crypto functionality

Public key crypto involves a counter-intuitive idea: use one key pair per
user, consisting of
I private key PrK : never to be revealed to the outside world
I public key PK : to be published and distributed freely
There are different types of public-key cryptosystems. Most used:
I Signature schemes
• Alice uses PrKA for signing message: m, [m]PrKA

• anyone can use PKA for verifying Alice’s signatures
I Encryption schemes
• using PKA anyone can encipher a message for Alice {m}PKa

• only Alice can decipher cryptogram with PrKA

I Key establishment
• Bob uses PrKB and PKA to compute secret KAB

• Alice uses PrKA and PKB to compute secret KAB

Page 11 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Public key crypto

Public key encryption as a form of translation

I Translation dictionaries
• Private key PrK is Dictionary Ourgeze to Dutch
• Public key PK is Dictionary Dutch to Ourgeze

I Say Alice keeps the last copy of the Dictionary Ourgeze to Dutch
• Encryption: translate to Ourgeze using PK
• Decryption: translate from Ourgeze using PrK

I Private key PrK can be reconstructed from public key PK !
• Not secure?
• In pre-computer time this was a huge task!

I Same for actual public key cryptography
• PrK can in principle be computed from PK
• but turns out to be extremely difficult in practice

I many tried but none succeeded (so far)
I this is the basis of quasi all cryptographic security!

Page 12 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Public key crypto

Public key encryption as self-locking boxes

Page 13 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Public key crypto

Public key crypto: some history

I The idea of public key crypto and first key-establishment scheme
• Ralph Merkle, Withfield Diffie, Martin Hellman in 1976
• supposedly already invented at GCHQ in 1969

I The first public key signature and encryption scheme
• published by Rivest, Shamir and Adleman (RSA) in 1978
• supposedly already invented at GCHQ in 1970

I Elliptic Curve Cryptography
• published independently by Koblitz and Miller in 1985
• GCHQ must have overlooked this
• the dominant public key cryptosystem today

I Nowadays literally thousands of public key systems

Page 14 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Public key crypto

Current trend: post-quantum crypto

I Quantum computer
• Hypothetical computer that would break all conventional public

key crypto
• Very exotic: computes in superposition
• NSA/GCHQ, Google, IBM, etc. could possibly build one

I Needed: public-key crypto that resists quantum attacks

I European project PQCRYPTO, see http://pqcrypto.eu.org/

I NIST contest for post-quantum crypto, deadline end November

I Active involvement of Radboud colleagues

Page 15 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Public key crypto

Some notation that you should know

I Z: the set of integers: {. . .− 3,−2,−1, 0, 1, 2, 3, . . .}

I a ∈ A: this means that a is an element of a set A. For example,
2 ∈ Z means 2 is an element of the set of integers, or equivalently, 2
is an integer

I ∀: for all. E.g., ∀a ∈ Z : a+ 1 ∈ Z means: for every element of the
set of integers, that element plus one is also an integer

I ∃: exists. E.g., ∀a ∈ Z,∃b ∈ Z : a+ b = 0 means: for every integer
there exists an integer that added to that integer gives 0

I |n|: the length of the integer n in bits

Page 17 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Math basics for public-key cryptography

Prime numbers and factorization

I A number is prime if it is divisible only by 1 and by itself.
Prime numbers are: 2, 3, 5, 7, 11, 13, (infinitely many)

I Each number can be written in a unique way as product of primes
(possibly multiple times), as in:

30 = 2 · 3 · 5 100 = 22 · 52 12345 = 3 · 5 · 823

I Finding such a prime number factorisation is a computationally hard
problem

I In particular, given two very large primes p, q, you can publish
n = p · q and no-one will (easily) find out what p, q are.

I Easy for 55 = 5 · 11 but already hard for 1763 = 41 · 43
I In 2009 factoring a 232-digit (768 bit) number n = p · q with

hundreds of machines took about 2 years

Page 18 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Math basics for public-key cryptography

Modular (clock) arithmetic

I On a 12-hour clock, the time ‘1 o’clock’ is the same as the time ‘13
o’clock’; one writes

1 ≡ 13 (mod 12) ie “1 and 13 are the same modulo 12”

I Similarly for 24-hour clocks:

5 ≡ 29 (mod 24) since 5+ 24 = 29
5 ≡ 53 (mod 24) since 5+ (2 · 24) = 53
19 ≡ −5 (mod 24) since 19+ (−1 · 24) = −5

I In general, for N > 0 and n,m ∈ Z,

n ≡ m (modN) ⇐⇒ there is a k ∈ Z with n = m + k · N

In words, the difference of n,m is a multiple of N.

Page 19 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Math basics for public-key cryptography

Numbers modulo N

How many numbers are there modulo N?

One writes ZN for the set of numbers modulo N. Thus:

ZN =
{
0, 1, 2, · · · N − 1

}
For every m ∈ Z we have mmodN ∈ ZN .

Some Remarks
I Sometimes Z/NZ is written for ZN

I Formally, the elements m of ZN are equivalence classes
{k | k ≡ m (modN)} of numbers modulo N

I These classes are also called residue classes or just residues
I In practice we treat them simply as numbers

Page 20 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Math basics for public-key cryptography

Residues form a “ring”

I Numbers can be added (subtracted) and multiplied modulo N: they
form a “ring”

I For instance, modulo N = 15

10+ 6 ≡ 1 6− 10 ≡ 11
3+ 2 ≡ 5 0− 14 ≡ 1
4 · 5 ≡ 5 10 · 10 ≡ 10

I Sometimes it happens that a product is 1
For instance (still modulo 15): 4 · 4 ≡ 1 and 7 · 13 ≡ 1

I In that case one can say:
1
4
≡ 4 and

1
7
≡ 13

Page 21 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Math basics for public-key cryptography

Multiplication tables

For small N it is easy to make multiplication tables for ZN .

For instance, for N = 5,

Z5 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

I Note: every non-zero number
n ∈ Z5 has a an inverse 1

n ∈ Z5
I This holds for every Zp with p

a prime number
(more below)

Page 22 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Math basics for public-key cryptography

Mod and div, and Java (and C too)

I For N > 0 and m ∈ Z we write mmodN ∈ ZN

• k = (mmodN) if 0 ≤ k < N with k = m + x · N for some x
• For instance 15mod 10 = 5 and −6mod 15 = 9

I % is Java’s remainder operation. It behaves differently from mod, on
negative numbers.

7 % 4 = 3 7mod 4 = 3
−7 % 4 = −3 −7mod 4 = 1

This interpretation of % is chosen for implementation reasons.[
One also has 7 % −4 = 3 and −7 % −4 = −3, which are undefined for

mod
]

I We also use integer division div, in such a way that:

n = m · (n div m) + (nmodm)

E.g., 15 div 7 = 2 and 15mod 7 = 1, and 15 = 7 · 2+ 1.

Page 23 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Math basics for public-key cryptography

Addition modulo N forms a group

The addition satisfies following properties:

closed: ∀a, b ∈ ZN : a+ b ∈ ZN

associative: ∀a, b, c ∈ ZN : (a+ b) + c = a+ (b + c)

neutral element: ∀a ∈ ZN : a+ 0 = 0+ a = a

inverse element: ∀a ∈ ZN ,−a ∈ ZN : a+ (−a) = (−a) + a = 0

abelian (optional) ∀a, b ∈ ZN a+ b = b + a

Terminology: Group order
Order of a finite group (ZN ,+), denoted #ZN , is number of elements in
the group

Page 24 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Math basics for public-key cryptography

Cyclic behaviour in (ZN ,+)

I Consider the sequence (that may cycle):
• i = 1 : a
• i = 2 : a+ a
• i = 3 : a+ a+ a
• . . .
• i = n : na

I In (ZN ,+):
• ∀a ∈ ZN this sequence is periodic
• period of this sequence is the order of a, denoted #a

Terminology: Order of a group element
The order of an element a, denoted #a, is the smallest integer n such
that na = 0

Page 25 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Math basics for public-key cryptography

Cyclic groups and generators

I Let g be some element of ZN

I Consider the set {0g , 1g , 2g , . . .}
I This is a group, called a cyclic group, denoted: 〈g〉
• Neutral element 0g
• Inverse of ig : (#g − i)g

I g is called generator

I Examples in Z12
• 〈3〉 = {3, 6, 9, 0}
• 〈5〉 = {5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7, 0}

I (Zn,+) itself is a cyclic group
• generator: g = 1
• ig = i

Page 26 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Math basics for public-key cryptography

Example on orders: (Z21,+)

I Order of the group Z21: 21
I Order of element 0: 1
I Order of element 1: 21
I Order of element 2: 21
I Order of element 3: 7
I . . .
Shortcut: find the smallest i such that i · x is a multiple of n

Fact: order of an element in (Zn,+)

#x = n/gcd(n, x) with gcd(n, x): greatest common divisor of x and n

More general:

Lagrange’s Theorem (applied to ZN)
For any element a ∈ ZN : #a divides N

Page 27 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Math basics for public-key cryptography

Greatest common divisor

I Definition:
gcd(n,m) = greatest integer k that divides both n and m

= greatest k with n = k · n′ and m = k ·m′,
for some n′,m′

I Examples:
gcd(20, 15) = 5 gcd(78, 12) = 6 gcd(15, 8) = 1

I Properties:
• gcd(n,m) = gcd(m, n)
• gcd(n,m) = gcd(n,−m)
• gcd(n, 0) = n

Terminology: relative prime (or coprime)
If gcd(n,m) = 1, one calls n,m relative prime or coprime

Page 28 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Math basics for public-key cryptography

Euclidean Algorithm

Property (assume n > m > 0):
I gcd(n,m) = gcd(m, n mod m)
This can be applied iteratively until one of arguments is 0
Example:

gcd(171, 111) = gcd(111, 171 mod 111) = gcd(111, 60)
= gcd(60, 111 mod 60) = gcd(60, 51)
= gcd(51, 60 mod 51) = gcd(51, 9)
= gcd(9, 51 mod 9) = gcd(9, 6)
= gcd(6, 9 mod 6) = gcd(6, 3)
= gcd(3, 6 mod 3) = gcd(3, 0) = 3

Variant allowing negative numbers:
gcd(171, 111) = gcd(111, 171 mod 111) = gcd(111,−51)

= gcd(51, 111 mod 51) = gcd(51, 9)
= gcd(9, 51 mod 9) = gcd(9,−3)
= gcd(3, 9 mod 3) = gcd(3, 0) = 3

Page 29 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Math basics for public-key cryptography

(ZN ,×): A group?

I ×: Multiplication modulo N

I are group conditions satisfied?

• closed: yes!

• associative: yes!

• neutral element: 1

• inverse element: no, 0 has no inverse

I Let us exclude 0: so (Zn \ {0},×)

I Check properties again with multiplication table
I Examples:

(1) (Z5 \ {0},×): OK!
(2) (Z21 \ {0},×): NOK!

Page 30 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Math basics for public-key cryptography

(Z∗
p,×) with prime p: a cyclic group!

I If p is a prime, Z∗p denotes Zp with 0 removed

I Order of the group is p − 1

I Group turns out to be cyclic

Multiplicative prime groups
(Z∗p,×) is a cyclic group of order p − 1

Page 31 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Math basics for public-key cryptography

Order of an element in (Z∗
p,×)

I Consider the sequence (that may cycle):
• i = 1 : a
• i = 2 : a× a
• i = 3 : a× a× a
• . . .
• i = n : an

I The operation ai is called exponentiation

I In (Z∗p,×):

• ∀a ∈ Z∗p this sequence is periodic

• period is called the (multiplicative) order of a, denoted #a

Page 32 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Math basics for public-key cryptography

Specifying the inverse of an element in (Z∗
p,×)

I Lagrange: order of an element divides order of the group p − 1

I So for any element, we have #x = (p − 1)/m for some integer m

I So xp−1 = x#x·m =
(
x#x

)m
= 1m = 1

I So x−1 = x (p−1) · x−1 = x (p−1)−1 = xp−2

I Problem: this costs p − 3 multiplications (at first sight . . .)

Page 33 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Math basics for public-key cryptography

What about (ZN ,×) with N = pq and p, q primes

I We remove 0: ZN \ {0}
I Inspection of multiplication table reveals some a× b = 0

• this implies a · b = k · N for some k

• a cannot be a multiple of N as a < N

• b cannot be a multiple of N as b < N

• a must be multiple of p or of q

• same for b

• so a is not coprime to N and b is not coprime to N

Definition of Z∗
N

Z∗N is the set of positive integers smaller than N and coprime to N, so
with gcd(x ,N) = 1

Page 34 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Math basics for public-key cryptography

Is (Z∗
N ,×) a group?

Definition of Z∗
N

Z∗N is the set of positive integers smaller than N and coprime to N, so
with gcd(x ,N) = 1

Note: if N is a prime, Z∗N = ZN \ {0}

We can check the group properties:

I Closed: if gcd(a,N) = 1 and gcd(b,N) = 1, then gcd(ab,N) = 1
I Associativity follows from associativity of multiplication
I Neutral element: 1
I Does every element have an inverse?
If we can answer this last question positively, we know (Z∗N ,×) is a group

Page 35 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Math basics for public-key cryptography

Extended Euclidean Algorithm

The extended Euclidean algorithm returns a pair x , y ∈ Z with
n · x +m · y = gcd(n,m)
Our earlier example for GCD with 171 and 111:

−51 = 171− 2 · 111
9 = 111+ 2 · (−51)
3 = (−51) + 6 · 9
0 = (−9) + 3 · 3

And now by backward substitution:

3 = (−51) + 6 · 9 (last equation with non-zero lefthand side)
3 = (−51) + 6 · (111+ 2 · (−51)) (substitution of 9)
3 = (−51) + 6 · 111+ 12 · (−51)
3 = 6 · 111+ 13 · (−51)
3 = 6 · 111+ 13 · (171− 2 · 111) (substitution of 51)
3 = 6 · 111+ 13 · 171− 26 · 111
3 = 13 · 171− 20 · 111

Page 36 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Math basics for public-key cryptography

Extended GCD via tables

Compute egcd(81, 57) via the following steps.

n m rem div (y , x − y · div)

81
↙

57
↙

24 1 (−7, 3− (−7) · 1) = (−7, 10)
57
↙

24
↙

9 2
↑

(3,−1− 3 · 2) = (3,−7)
24
↙

9
↙

6 2
↑

(−1, 1− (−1) · 2) = (−1, 3)
9
↙

6
↙

3 1
↑

(1, 0− 1 · 1) = (1,−1)
6 3

||
gcd

0 2 −→
↑

(0, 1)

Indeed: −7 · 81+ 10 · 57 = −567+ 570 = 3 = gcd

Page 37 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Math basics for public-key cryptography

Extended GCD table invariant

Suppose we have reached this stage:

n m rem div (y , x − y · div)
...

...
...

...
...

a b (u, v)
...

...
...

...
...

gcd 0

Then:
a · u + b · v = gcd

Check this at every (up-going) step to detect calculation mistakes.

Page 38 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Math basics for public-key cryptography

Relative primes lemma

Relative primes Lemma [Important]
m has multiplicative inverse modulo N (i.e., in ZN) iff gcd(m,N) = 1

Proof (⇒) Extended gcd yields x , y with m · x + N · y = gcd(m,N) = 1.
Taking both sides modulo N gives m · x mod N = 1, or x = m−1

(⇐) We have m · x ≡ 1modN so there is an integer y such that
m · x = 1+ N · y or equivalently m · x − N · y = 1. Now gcd(m,N)
divides both m and N, so it divides m · x − N · y = 1. But if gcd(m,N)
divides 1, it must be 1 itself. �

Page 39 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Math basics for public-key cryptography

(Z∗
N ,×) is a group!

I We showed all group properties except that all elements have an
inverse

I But the relative primes lemma states that all elements in Z∗N have an
inverse

I Multiplicative inverse can be computed with extended Euclidean
algorithm
• can be programmed efficiently

I Moreover, it is commutative as ordinary multiplication is
commutative

Page 40 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Math basics for public-key cryptography

(Z∗
p,+,×) is a field [for info only]

Corollary of relative primes lemma
For p a prime, every non-zero n ∈ Zp has an inverse

(Zp,+,×) is a field, meaning:

I (Zp,+) is a group

I (Zp \ {0},×) is a group

I Distributivity:
• (a+ b)× c = (a× c) + (b × c)
• c × (a+ b) = (c × a) + (c × b)

Page 41 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Math basics for public-key cryptography

What is the order of (Z∗
N ,×)?

We now know (Z∗N ,×) is a group but don’t know its order

Definition: Euler’s totient function
Euler’s totient function of an integer N, denoted φ(N), is the number of
integers smaller than and coprime to N.

I Clearly #(Z∗N ,×) = φ(N)
I For prime p, all integers 1 to p − 1 are coprime to p: φ(p) = p − 1

I For the product of two primes N = pq we have to exclude:
• 0
• multiples of p: p, 2p, ... (q − 1)p, so q − 1 of them
• multiples of q: q, 2q, ... (p − 1)q, so p − 1 of them

I So
φ(pq) = pq− (p− 1)− (q− 1)− 1 = pq−p−q+ 1 = (p− 1)(q− 1)

I Note: Computing φ(N) is as hard as factoring N

Page 42 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Math basics for public-key cryptography

Number-theoretic theorems [Background info]

Euler’s theorem (Lagrange’s theorem applied to (Z∗
N ,×))

If gcd(m,N) = 1, then mφ(N) ≡ 1modN

PROOF Write Z∗
N = {x1, x2, . . . , xφ(N)} and form the product:

x = x1 · x2 · · · xφ(N) ∈ Z∗
N . Form also y = (m · x1) · · · (m · xφ(N)) ∈ Z∗

N . Thus
y ≡ mφ(N) · x . Since m is invertible the factors m · xi are all different and equal
to a unique yj ; thus x = y . Hence mφ(N) ≡ 1. �

Fermat’s little theorem
If p is prime and m is not a multiple of p then mp−1 ≡ 1mod p

PROOF Take N = p in Euler’s theorem and use that φ(p) = p − 1. �

Used as primality test for p: try out if mp−1 ≡ 1 for many m.

Page 43 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Math basics for public-key cryptography

Exponentiation by Square-and-Multiply

I Computing ae mod n in naive way takes e − 1 modular
multiplications

I Infeasible if a, e and n are hundreds of decimals
I More efficient method: square-and-multiply
I Example: computing g12 with left-to-right square-and-multiply
• g2 = g × g
• g4 = g2 × g2

• g8 = g4 × g4

• g12 = g8 × g4

I Only 3 squarings and 1 multiplication
I Instead of 11 in naive method

Page 44 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Math basics for public-key cryptography

Exponentiation by Square-and-Multiply (cont’d)

I Computing g12 with right-to-left square-and-multiply
• g2 = g × g
• g3 = g2 × g
• g6 = g3 × g3

• g12 = g6 × g6

I Many variants exist, typical computation cost for ae mod N:
• |e| squarings, with |e| the bitlength e
• 1 to |e| multiplications, depending on e and method

I Relatively cheap
• This is why group-based public key crypto actually works
• Computing x−1 mod n by xφ(n)−1 mod n often cheaper than by

extended Euclidean algorithm

Page 45 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Math basics for public-key cryptography

Ron Rivest, Adi Shamir, Leonard Adleman

Designed their famous cryptosystem in 1977-1978

Page 47 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
The RSA cryptosystem

What is the RSA cryptosystem?

RSA is a trapdoor one-way function y = f (x)
I given x , computing y = f (x) is easy
I given y , finding x is difficult
I given y and trapdoor info: computing x = f −1(y) is easy

(textbook) encryption with RSA:

{m}PK = me mod n

(textbook) decryption with RSA:

[c]PrK = cd mod n

I Public key: PK = (n, e)
I Private key: PrK = (n, d)
I Modulus n = p · q with p and q large primes
• the factorization n = p · q is the trapdoor

Page 48 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
The RSA cryptosystem

How to determine the RSA private key

The order of the group (Z∗n,×) is φ(n) = (p − 1)(q − 1) so ∀x ∈ Z∗n:

xφ(n) mod n = x (p−1)(q−1) mod n = 1

Let d satisfy
e · d = 1+ k · (p − 1)(q − 1)

then (omitting modn)

(xe)d = xe·d = x1+k·φ(n) = x · xkφ(n) = x · (xφ(n))k = x

(Conclusion actually holds for all x ∈ Zn)

So the RSA private exponent d is given by

d = e−1 mod (p − 1)(q − 1)

Page 49 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
The RSA cryptosystem

Recap: RSA public key pair

I Public key: public exponent and modulus (e, n)
I Private key: private exponent and modulus (d , n)

I Modulus:
• n = p · q with p and q large primes

I Public exponent e
• often small prime, e.g., 216 + 1: makes computing xe light
• p − 1 and q − 1 shall be coprime to e

I Private exponent d
• exponent d is inverse of e modulo (p − 1)(q − 1)
• length of d is close to that of n: xd much slower than xe

I Security of RSA relies on difficulty of factoring n
• factoring n allows computing d from (e, n)
• p and q shall be large enough and unpredictable by attacker
• given n, knowledge of φ(n) allows factoring n and computing d

Page 50 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
The RSA cryptosystem

Factoring n, given φ(n) [for info only]

Assume modulus n is known
Knowledge of φ(n) allows factoring n

We have two equations n =p·q and φ = (p−1)(q−1) or
n =p·q and φ =p · q − p − q+1

Subtracting them: φ = n−p−q+1. Reordering and substitution:

n =p·(n − φ+ 1−p)
Working out gives the following quadratic equation in p:

p2−A·p+n = 0 with A = n − φ+ 1

Using the standard formula for the solutions of a quadratic equation:

p, q =
A±
√
A2 − 4n
2

with A = n − φ+ 1

Page 51 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
The RSA cryptosystem

Factoring n, given φ(n), example [for info only]

So we have:

p, q =
A±
√
A2 − 4n
2

with A = n − φ+ 1

Example: n = 2021 and φ(n) = 1932.

This yields A = 2021− 1932+ 1 = 90

p =
90+

√
8100− 4 · 2021

2
and q =

90−
√
8100− 4 · 2021

2

So p = 90+
√
16

2 = 47 and p = 90−
√
16

2 = 43

Page 52 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
The RSA cryptosystem

Difficulty of factoring

I State of the art of factoring: two important aspects
• reduction of computing cost: Moore’s Law
• improvements in factoring algorithms

I Factoring algorithms
• Sophisticated algorithms involving many subtleties
• Two phases:

I distributed phase: equation harvesting
I centralized phase: equation solving

• Best known: general number field sieve (GNFS)
I These advances lead to increase of advised RSA modulus lengths

see http://www.keylength.com/

Page 53 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
The RSA cryptosystem

Factoring records

Page 54 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
The RSA cryptosystem

Using RSA for encryption

The naive way, called textbook RSA:
I Bob enciphers message for Alice with her public key: c = {m}PKA

• codes his message as an integer m ∈ Z

• computes c = me mod n, so with PKA = (e, n)

I Alice deciphers received cryptogram with her private key:
m = [c]PrKA

• computes m = cd mod n with (d , n) = PrKA, her private key

• decodes m as a message

Page 55 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
The RSA cryptosystem

Using RSA for encryption: attention points

Plaintext m shall have enough entropy:

I Otherwise, Eve can guess m and check if c = me mod n

Example: PIN encryption in EMV (Visa, Mastercard) payment cards

I Requirement: protecting PIN against wiretapping of card contacts

I Solution: encryption between terminal and smart card using RSA

I Confidentiality: terminal adds random string r : m = PIN‖r

• Note: in symmetric encryption plaintext uniqueness (nonce) is
sufficient

I Freshness: include challenge N from card m = PIN‖r‖N

Page 56 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
The RSA cryptosystem

Using RSA for encryption: attention points
(cont’d)

Algebraic properties of RSA: (malleability)
I Say Eve has the plaintexts m1 and m2 of two cryptograms c1 and c2.

I So m1 = cd1 and m2 = cd2 with (d , n) = PrKA

I Then if she sees a cryptogram that happens to be c3 = c1 × c2, she
can decipher it without PrKA

I Namely: cd3 = (c1 × c2)
d = cd1 × cd2 = m1 ×m2

I So Eve can decipher c3 without known the private key!
I Same for e.g. c4 = c1 × c1, or in general ci = c t1 × cv2

Other inconvenient properties:

I Length of message m is limited by |m| ≤ |n|
I RSA decryption is relatively slow

Current advice by experts: don’t encipher data with RSA

Page 57 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
The RSA cryptosystem

Using RSA for encryption: solutions

I Apply a hybrid scheme:
• use RSA for establishing a symmetric key
• encipher and authenticate with symmetric cryptography

I Sending an encrypted key
• addition of redundancy and randomness before encryption
• verification of redundancy after decryption
• if NOK, return error

I Many proposals:
• best known standard: PKCS #1 v1.5 and v2 (e.g. OAEP)
• rather complex and not clear if objectives are achieved

I despite the problems, this is still the most widespread method

Page 58 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
The RSA cryptosystem

Example: PKCS#1 v1.5 padding for encryption

INPUT: Recipient’s RSA public key, (n, e) of length k = |n|/8 bytes;
payload D (e.g., a symmetric key) |D| ≤ 8(k − 11).
OUTPUT: Encrypted block of length k bytes

(1) Form the k-byte encoded block, EB

EB = 00 ‖ 02 ‖ PS ‖ 00 ‖ D

where PS is a random string k − |D| − 3 non-zero bytes
(ie. at least eight random bytes)

(2) Convert byte string EB to integer m.
(3) Encrypt with RSA: c = me mod n
(4) Convert c to k-byte output block OB
(5) Output OB

Page 59 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
The RSA cryptosystem

PKCS#1 v1.5 encryption padding example

Assume a RSA public key (n, e) with n 1024 bit long.
As data D, take a (random) AES-128 key, such as:

D = 4E636AF98E40F3ADCFCCB698F4E80B9F

Message block EB with random padding bytes shown in green:
EB = 0002257F48FD1F1793B7E5E02306F2D3

228F5C95ADF5F31566729F132AA12009
E3FC9B2B475CD6944EF191E3F59545E6
71E474B555799FE3756099F044964038
B16B2148E9A2F9C6F44BB5C52E3C6C80
61CF694145FAFDB24402AD1819EACEDF
4A36C6E4D2CD8FC1D62E5A1268F49600
4E636AF98E40F3ADCFCCB698F4E80B9F

The random padding makes me mod n different each time

Page 60 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
The RSA cryptosystem

Using RSA for encryption: state-of-the-art

RSA Key Establishment Method (KEM)

I Bob randomly generates r ∈ Zn

I Bob sends c = r e mod n to Alice

I Alice deciphers c back to r

I both compute shared symmetric key K as K = hash(r)

RSA-KEM is the sound way to use RSA for establishing a key

Page 61 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
The RSA cryptosystem

Using RSA for signatures

The naive way:

I Alice signs message m with her private key PrKA: s = [m]PrKA

• codes her message as an integer m in Zn

• computes s = md mod n, so with PrKA = (d , n):

s = [m]PrKA
= md mod n

I Bob verifies the signed message (m, s):
(1) computes m′ = se mod n, so with PKA = (e, n)
(2) checks that m′ = m

Page 62 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
The RSA cryptosystem

Using RSA for signatures: attention points

I Limitation on message length (and secure modes are hard to define)

• instead of m, we input h(m)
• additional benefit: becomes much faster

I RSA malleability
• given two signatures s1 = md

1 and s2 = md
2 , Eve can construct a

signature for m3 = m1 ·m2 mod n by computing
s3 = s1 · s2 mod n.

• this is forgery: signing without knowing private key
I solution: specific padding schemes, e.g. PKCS # 1 v1.5 or v2 (PSS)
• adds redundancy by padding
• applies hashing for destroying malleability
• e.g., s1 · s2 no longer verifies as a valid signature

Page 63 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
The RSA cryptosystem

RSA Probabilistic Signature Scheme (PSS) [for
info only]

(MGF = XOF)

Page 64 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
The RSA cryptosystem

RSA efficiency

I Private exponentiation:

• Square and multiply
• grows with the third power of the modulus length
• e.g., modulus length ×2: computation time goes ×8

I Public exponentiation:
• more efficient thanks to short public exponent

I Key generation:
• randomly generating large primes p and q

• About 15 to 40 times the effort of a private exponentiation

Page 65 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
The RSA cryptosystem

RSA toy example, by hand [required skill]

Key generation:
I Choose e = 3

I Take p = 5, q = 11, so that n =p · q= 55 and φ(n) = 40

• OK: both p − 1 and q − 1 are coprime to e

I Compute d = 1
e = 1

3 ∈ Z∗40 with extended Euclidean algorithm:

• it yields x , y ∈ Z with 40x + 3y = 1, so that d = 1
3 = y

• By hand: 3−1 mod 40 = −13 = 27
(indeed with 40 · 1+ 3 · −13 = 40− 39 = 1)

Encryption and decryption of message m = 19 ∈ Zn

I encipher: c = me mod n = 193 mod 55 = 39
I decipher: m′ = cd mod n = 3927 mod 55 = 19

Page 66 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
The RSA cryptosystem

Recap: RSA key pair generation

A user generating an RSA key pair with given modulus length |n|:
I chooses the public exponent e
• often a small prime imposed by the context
• sometimes randomly generated per user, e.g. 256 bits

I randomly generates prime p of given length ` = |n|/2
• p − 1 shall be coprime to e

I randomly generates prime q such that p · q has length |n|
• q − 1 shall be coprime to e

I computes modulus n = p · q
I computes private exponent d as e−1 modulo (p − 1)(q − 1)
I Attention points [for info only]:
• RSA works with p, q of any length but often software requires

that |n| is a multiple of 8 (or 32) and |p| = |q| = |n|/2
• There are multiple valid values of d < (p − 1)(q − 1) but just

one < lcm(p − 1)(q − 1) = (p − 1)(q − 1)/gcd(p − 1, q − 1)

Page 67 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
The RSA cryptosystem

RSA toy example, calculated by hand [required
skill]

I Choose e = 3
I Take p = 5, q = 11, so that n = p · q = 55 and φ(n) = 40
• OK: both p − 1 and q − 1 are coprime to e

I Compute d = 1
e = 1

3 ∈ Z∗40 with extended Euclidean algorithm:
• it yields x , y ∈ Z with 40x + 3y = 1, so that d = 1

3 = y
• By hand: 3−1 mod 40 = −13 = 27

(indeed with 40 · 1+ 3 · −13 = 40− 39 = 1)
I Let message m = 19 ∈ Zn

• encipher c = me mod n = 193 mod 55 = 39
• decipher m′ = cd mod n = 3927 mod 55 = 19

Page 68 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
The RSA cryptosystem

The Achilles’ Heel of (public key) cryptography

Cryptography does not solve problems, but only reduces them

I In public key cryptography, problems are reduced to:

Authentication of public keys

I How do we know whether PKA actually belongs to Alice, when
• we verify a signature with PKA?
• we establish a shared secret using PKA?
• we authenticate someone using PKA?

I PKA could actually be the public key of Trudy
I Need: authenticate link between public key and its owner
I In many practical systems this issue is not well addressed
• one of reasons for the miserable level of security in IT
• same mistakes made again and again (see next slides)
• problem of human behaviour rather than technology

Page 70 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography Public key authentication

Methods of public key authentication

Say, Bob wants to use Alice’s public key
I He can obtain it via email, Alice’s homepage, business card, . . .

There are essentially three methods:
I Manual: Bob relies on Alice alone
I Web of trust: Bob relies on their mutual friends
I Certificate Authority (CA): Bob relies on a central authority
. . . and: Trust on First Use (TOFU): Bob knocks on wood

Systems for public key authentication (and revocation) are called Public
Key Infrastructures (PKI). Most of the time, the term PKI is used as a
synonym of the CA method.

Page 71 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography Public key authentication

Manual public key validation

I Bob checks with Alice if his copy of PKA matches that of Alice
• e.g., face-to-face, via phone or video-call
• email will NOT do
• requires that Bob verifies he is actually talking to Alice

I Often one uses a hash
• verifying h(PKB , IdB) instead of key PKB directly
• hash function shall be 2nd preimage resistant
• reader-friendly coding of the hash: fingerprint

I Most reliable method
• very rarely used
• main problem: requires users to be security-aware

I a public key crypto pioneer: Phil Zimmerman
• 1991: creates PGP secure email, supporting key validation
• now: at Silent Circle (e.g. blackphone), settling with TOFU
• you cannot be idealistic all your life

Page 72 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography Public key authentication

Web-of-trust public key authentication

Crowd style (“trust what your friends say”, bottom-up)
I Say Alice and Bob have a common friend: Wally
• Bob already has an authentic copy of PKW : Wally’s public key
• Wally already verified that his copy of PKA is authentic
• Bob asks Wally to sign 〈Alice,PKA〉 with his private key PrKW

• Bob can now verify this signature (certificate) using PKW

I For more assurance, Bob can ask multiple friends to sign 〈Alice,PKA〉
I Wally acts as a kind of TTP
I Difference with the TTP in the symmetric-key case
• symmetric: TTP has shared key and can cheat undetectedly
• here Wally can sign 〈Alice,PKW ′〉 instead of 〈Alice,PKA〉
• . . . and can decipher Bob’s messages and/or sign as Alice
• but: Bob and Alice can catch Wally by manual validation

I Feature introduced by Phil Zimmerman in PGP
• same problem: requires security-aware users
• PGP (and gpg) usage in practice nowadays: mostly TOFU

Page 73 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography Public key authentication

Web of trust: signing parties

I People meet to check each other’s identity
I and exchange public key fingerprints: (truncated) hashes of public

keys (BJ’s is 0xA45AFFF8)
• beware of 2nd preimages, so don’t truncate too much!

I to later look up the keys corresponding to the fingerprint and sign
them

(source: http://xkcd.com/364/)

Page 74 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography Public key authentication

Certificate Authority

Phone-book style (“trust what an authority says”, top-down)
I use a trusted list of pairs 〈name, PKname〉
I but who can be trusted to compile and maintain such a list?
I this is done by a Certificate Authority (CA)
• a super-Wally that signs public keys to be trusted by everyone

I Basic notion: public key certificate, i.e. signed statement:[
“Trustee declares that the public key of X is PKX ;

this statement dates from (start date) and is valid
until (end date), and is recorded with (serial nr.)”

]
PrKTrustee

I There are standardised formats for certificates, like X.509
I The term (public key) certificate is often abused

Page 75 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography Public key authentication

Public Key Infrastructure (PKI)

Two relevant authorities:
I Certification Authority (CA)
• generates public key certificates
• publishes certificate revocation lists for compromised keys
• can be done in multiple levels: root CA and intermediate ones

I Registration Authority
• part of CA that verifies the identity of the user
• expensive part, with many administrative and legal aspects

Practically,
I Most CAs are commercial companies, like VeriSign, Thawte,

Comodo, or DigiNotar (now “dead”)
I They offer different levels of certificates, depending on the

thoroughness of identity verification in registration

Page 76 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography Public key authentication

Example verification, by VeriSign

VeriSign offers three assurance levels for certificates
(1) Class 1 certificate: only email verification for individuals:

“authentication procedures are based on assurances that the
Subscriber’s distinguished name is unique within the domain of a
particular CA and that a certain e-mail address is associated with a
public key”

(2) Class 2 certificate: “verification of information submitted by the
Certificate Applicant against identity proofing sources”

(3) Class 3 certificate: “assurances of the identity of the Subscriber
based on the personal (physical) presence of the Subscriber to
confirm his or her identity using, at a minimum, a well-recognized
form of government-issued identification and one other identification
credential.”

Page 77 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography Public key authentication

http://xkcd.com/364/

Where do I find someone else’s certificate?

I The most obvious way to obtain a certificate is: directly from the
owner

I From a certificate directory or key server, such as:
• pgp.mit.edu

(you can look up BJ’s key there, and see who signed it)
• subkeys.pgp.net etc.

I The root public keys are pre-configured, typically in browsers.
• Often called “root certificates”, but they aren’t
• E.g., in firefox look under Preferences - Advanced - View

Certificates
• On the web:

www.mozilla.org/projects/security/certs/included

Page 78 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography Public key authentication

Certificate (PKI) usage examples

I “Secure webaccess” via server-side certificates, recognisable via:

• protocols: TLS and https
• allows user to authenticate website content
• protects confidentiality of web traffic between user and site
• important for passwords and card nr. based credit card payments

I Code signing, for integrity and authenticity of downloaded code
I EMV payment with smart cards: VISA, Mastercard, Maestro
I Client-side certificates for secure remote logic (e.g., in VPN =

Virtual Private Network)
I National ID cards and travel passports
I Sensor-certificates in a sensor network, against spoofing sensors

and/or sensor data

Page 79 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography Public key authentication

Certificate Revocation, via CRLs

Revocation is: declaring a public key certificate no longer valid

Possible reasons for revocation
I certificate owner lost control over the private key
I crypto has become weak (think of MD5 or SHA-1 hash)
I CA turns out to unreliable (think of DigiNotar)

Certificate Revocation Lists (CRLs)
I maintained by CAs, and updated regularly (e.g., 24 hours)
I should be consulted before every use of a certificate
I you can subscribe to revocation lists so that they are loaded

automatically into your browser

Page 80 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography Public key authentication

Revocation, via OCSP

I In off-line checking, CRLs require bandwidth and local storage
• overflowing the list is possible attack scenario

I Alternative: OCSP = Online Certificate Status Protocol
(1) Suppose Bob wants to check Alice’s certificate before use
(2) Bob sends OCSP request to CA with certificate serial nr.
(3) CA looks up serial number in its (supposedly) secure database
(4) if not revoked, it replies with a signed, successful OCSP response

I Privacy issue: with OCSP you reveal to CA which certificates you
use, and thus who you communicate with
• also when you communicate with someone using OCSP

Note: you are basically online with the CA, so long-term certificates are
not really needed.

Page 81 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography Public key authentication

pgp.mit.edu
subkeys.pgp.net
www.mozilla.org/projects/security/certs/included

Certificate chains

Imagine you have certificates:
(1) [“A’s public key is PKA . . . ”]PrKB

(2) [“B’s public key is PKB . . . ”]PrKc

Suppose you have these 2 certificates, and C ’s public key
I What can you deduce?
I Who do you (have to) trust?
I To do what?

Example: active authentication in e-passport
I private key securely embedded in passport chip
I public key signed by producer (Morpho in NL)
I Morpho’s public key signed by Dutch state

Page 82 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography Public key authentication

The trouble with PKI

I All participants need authentic copies of root CA public keys
• a root CA cannot have a certificate, per definition
• often does have a meaningless self-signed certificate
• hardcoded in software or included in software releases
• you are trusting Microsoft, Mozilla, Google, Apple, KPN . . .

I Why most PKI’s have failed up to now:
• CAs in theory: trustworthy service providers that accept liability
• CAs in practice: unreliable organizations only in it for the money

I Tension between (CA) PKI concept and the essence of public key
crypto:
• PK crypto: authentication and confidentiality without need for

pre-shared keys or trusted third party
• CA is nothing more than a trusted third party

Page 83 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography Public key authentication

Problems in the TLS (https) PKI

I In your browser there are about 650 CA root keys
• Note: a common misnomer for CA root key is (CA) root

certificate
• whatever these CAs sign is shown as trusted by your browser

I This makes the PKI system fragile
• CAs can sign anything, not only for their customers
• e.g. rogue gmail certificates, signed by DigiNotar, appeared in

aug.’11, but Google was never a customer of DigiNotar
I Available controls are rather weak:
• rogue certificates can be revoked (blacklisted), after the fact
• browser producers can remove root certificates (of bad CAs)
• compulsory auditing of CAs
• via OCSP server logs certificate usage can be tracked

I root of the problem: lack of liability of software providers and CAs

Page 84 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography Public key authentication

Free/community CA services

I CAcert, https://cacert.org
• provides free certificates, via a web-of-trust
• certificate owners can accumulate points by being signed by

assurers
• if you have ≥ 100 points, you can become assurer yourself
• CAcert never managed get its root key into major browsers

I Let’s encrypt, https://letsencrypt.org/
• more recent initiative for free TLS certificates
• issued via an automated process, with short (90 day) validity
• no own root key in browsers, but “cross-signed” version by

existing CA (IdenTrust)

In both cases, no liability is accepted.

Page 85 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography Public key authentication

https://cacert.org
https://letsencrypt.org/

Trust on first use (TOFU)

Per default, no public key validation
I Bob trusts that received public key is Alice’s without validation
I Man-in-the-middle risk: Eve can substitute public key by hers
I Used by the cool crowd:
• messaging service Signal
• messaging service Whatsapp
• secure mobile blackphone from Silent Circle
• . . .

I Sometimes presented as alternative to PKI
I How is it possible that people buy this nonsense?
• it promises security without the effort, a.o., key management
• similar to voting for populists and expecting improvement
• or eating chocolate to feel better

I It is not all bad: systems do support manual key validation

Page 86 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography Public key authentication

Example of TOFU: WhatsApp

I There is a white paper describing the security protocol
• not enough detail to know what they are doing exactly
• e.g. what happens when replacing phone?
• complex protocol with 4 layers of ECC and 3 of symmetric crypto

I Uses ECC public key pairs to establish symmetric keys
• public key pairs generated at install time
• distributed via central WhatsApp server without validation

I Manual validation by select contact, item encryption
• not transparent nor user-friendly

I Preliminary conclusion
• a critical review would be welcome

Note: Whatsapp protocol is based on protocol of Signal, that in turn is
open source

Page 87 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography Public key authentication

DigiNotar I: background

I The Dutch CA DigiNotar was founded in 1997, based on need for
certificates among notaries
• bought by US company VASCO in jan’11
• “voluntary” bankruptcy in sept.’11

I DigiNotar’s computer systems were infiltrated in mid july’11,
resulting in rogue certificates
• DotNetNuke CMS software was 30 updates (≥ 3 years) behind
• Dutch government only became aware on 2 sept.
• it operated in “crisis mode” for 10 days

I About 60.000 DigiNotar certificates used in NL
• many of them deeply embedded in infrastructure (for

inter-system communication)
• some of them need frequent re-issuance (short-life time)
• national stand-still was possible nightmare scenario

Page 88 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography DigiNotar case study

DigiNotar II: act of war against NL?

I Hack claimed by 21 year old Iranian “Comodohacker”
• he published proof (correct sysadmin password ‘Pr0d@dm1n’)
• claimed to have access to more CAs (including GlobalSign)
• also political motivation (see pastebin.com/85WV10EL)

Dutch government is paying what they did 16 years ago about Srebren-
ica, you don’t have any more e-Government huh? You turned to age
of papers and photocopy machines and hand signatures and seals? Oh,
sorry! But have you ever thought about Srebrenica? 8000 for 30?
Unforgivable... Never!

I Hacker could have put all 60K NL-certificates on the blacklist
• this would have crippled the country
• interesting question: would this be an act of war?
• difficult but very hot legal topic: attribution is problematic
• traditionally, in an “act of war” it is clear who did it.

Page 89 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography DigiNotar case study

pastebin.com/85WV10EL

DigiNotar III: rogue certificate usage (via OCSP
calls)

Main target: 300K gmail users in Iran (via man-in-the-middle)

(More info: search for: Black Tulip Update, or for: onderzoeksraad
Diginotarincident)

Page 90 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography DigiNotar case study

DigiNotar IV: certificates at stake

I DigiNotar as CA had its own root key in all browsers
• after the compromise, it was kicked out, in browser updates
• Microsoft postponed its patch for a week (for NL only)!
• the Dutch government requested this, in order to buy more time

for replacing certificates (from other CAs)
I DigiNotar was also sub-CA of the Dutch state
• private key of Staat der Nederlanden stored elsewhere
• big fear during the crisis: this root would also be lost
• it did not happen
• alternative sub-CA’s: Getronics PinkRoccade (part of KPN),

QuoVadis, DigiDentity, ESG

Page 91 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography DigiNotar case study

DigiNotar V: Fox-IT findings

I DigiNotar hired security company Fox-IT (Delft)
• Fox-IT investigated the security breach
• published findings, in two successive reports (2011 & 2012)

I Actual problem: the serial number of a DigiNotar certificate found
in the wild was not found in DigiNotar’s systems records

I The number of rogue certificates is unknown
• but OCSP logs report on actual use of such certificates

I Fox-IT reported “hacker activities with administrative rights”
• attacker left signature Janam Fadaye Rahbar
• same as used in earlier attacks on Comodo

I Embarrassing findings:
• all CA servers in one Windows domain (no compartimentalisation)
• no antivirus protection present; late/no updates
• some of the malware used could have been detected

Page 92 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography DigiNotar case study

DigiNotar VI: lessons if you still believe in CA’s

I Know your own systems and your vulnerabilities!
I Use multiple certificates for crucial connections
I Strengthen audit requirements and process
• only management audit was required, no security audit
• the requirements are about 5 years old, not defined with “state

actor” as opponent
I Security companies are targets, to be used as stepping stones
• e.g., march’11 attack on authentication tokens of RSA company
• used later in attacks on US defence industry

I Alternative needed for PKI?
I Cyber security is now firmly on the (political) agenda
• also because of “Lektober” and stream of (website) vulnerabilities
• now almost weekly topic in Parliament

(e.g., breach notification and privacy-by-design)

Page 93 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography DigiNotar case study

DigiNotar VII: Finally (source: NRC 7/9/2011)

DigiNotar has not re-emerged: it had only one chance and blew it!

Page 94 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography DigiNotar case study

Entity authentication with electronic signatures

Challenge-response with electronic signature [. . .]PrK

A −→ B : N, IdA
B −→ A : [N, IdA]PrKB

or mutual authentication

A −→ B : NB , IdA
B −→ A : [NB , IdA]PrKB

,NA, IdB
A −→ B : [NA, IdB]PrKA

I Advantage: verifier does not require secret!
• Prover does not need to trust verifier for protecting its keys
• Same private key can be used to authenticate in several places
• This creates privacy issues: linkability

Page 95 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography On electronic signatures

The claim (or myth) of non-repudiation

I The unique advantage of asymmetric crypto is:
• verification of public key signature does not require a secret key
• so only the signer could have generated the signature

I Public-key advocates have used this to promote their crypto:

Public-key signatures support non-repudiation
Non-repudiation: inability after signing something to deny it

I A legal/business property is attributed to a cryptographic protocol
I But there are excuses for denying a signature, such as:
• someone else used the private key on my PC or smart card
• I did sign but not the document you are showing me
• the crypto has been broken
• . . .

I In the end it is about rules, terms and conditions and agreements

Page 96 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography On electronic signatures

Electronic vs. ordinary signatures

I Ordinary ‘wet’ signature
• produced by human, expressing clear intent
• the same on all documents
• one person typically has one signature
• easy to forge, but embedded in established usage context

I Electronic signature
• different for each signed document
• person may have multiple key pairs, e.g., 1 business, 1 personal
• electronic signatures can be legally recognized

I EU directive 1999/93/EC, replaced by eIDAS in 2014
I requires certified secure signature-creation device
I in practice: an ID chip card containing private key(s)
I legal validity implies PKI with government-approved CA
I conditions for NL at pkioverheid.nl

• crypto is mature, deployment still problematic

Page 97 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography On electronic signatures

Electronic signatures, the ID chip card

I The private keys should at all time be under control of the user
• the ID card signs a string presented to it with its private key(s)
• requires prior submission of a PIN
• retrieving the private key from the chip should be hard
• key pairs should be generated on-card

I Two main use cases:
• authentication with challenge-response: for access to web sites,

infrastructure, etc.
• document signing, where a hash is presented to a card
A user should be in control of whether he does one or the other

Page 98 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography On electronic signatures

Electronic signatures, the ID chip card (cont’d)

I Two key pairs:
• one for authentication
• one for non-repudiation (signatures)

I each key has its own PIN
• so the user is in principle aware of what (s)he is doing

I a more cost-effective solution:
• a single key pair for both operations
• two separate PINs for the functions
• distinguish hashes (sign) from challenges (auth) with domain

separation
I Scenario upon presentation of x to chip (single-key case)
• x can be h(m) or a challenge
• if sign PIN was presented, chip returns [x |0]PrK
• if auth PIN was presented, chip returns [x |1]PrK
• if no valid PIN was presented, chip returns error

Page 99 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography On electronic signatures

Electronic signatures, the user interface

I Classical approach: card reader with IC card connected to PC
• PC has dedicated signing software, e.g., as plugin for a mail

client
• guidance is done on PC screen
• input must be done done on PC keyboard

I Lots of attack possibilities in the PC
• intercept PINs, for signing without the card owner
• show a different message on the screen, etc.

I Attempts at dealing with PC problem
• tamper-evident, dedicated, non-updateble signature devices
• like e-book readers, with only a screen, card reader and keypad
• simplicity and limited functionality allows getting security

assurance for such a device
• not cool: public would prefer a secure app on their smartphone

I this is what IRMA will offer, see privacybydesign.foundation

Page 100 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography On electronic signatures

Example of modern card reader with pin pad

I For use with German e-Identity card neue Personalausweis (nPA)
I Interfaces for both contact and contactless cards
I Certified by BSI; cost: 30-50 e

Page 101 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography On electronic signatures

https://privacybydesign.foundation/en

Server-side signatures (beware of snake-oil)

I So far we have assumed that the signer has his private keys locally
• solid: he signs with ID chip card in dedicated card reader
• less solid: he signs with his smartphone or laptop

I concerns: leakage of key pair or loss of private key
I Server-side signature approach:
• private key is (in secure hardware module) on some remote server
• keys are very well protected against leakage and loss
• signer authenticates to server, and then pushes sign button
• different attempt to address non-repudiation

I Problems of server-side signatures
• can the sysadmin sign on behalf of everyone else?
• strong user authentication requires secret keys anyway
• example: Digidentity

I uses one-time-password via SMS as user authentication
I recognized as qualified signatures (what a wonderful world!)

Page 102 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Rolling out public key cryptography On electronic signatures

(Z∗
p,×) with prime p

Multiplicative prime groups
(Z∗p,×) is a cyclic group of order p − 1

Alternative way of seeing it:
I Find a generator g ∈ (Z∗p,×)
I Write elements as powers of the generator: g i

I Multiplication: find c such that g c = g a × gb

I Clearly: g a × gb = g a+b = g a+b mod p−1

I So c = a+ b mod p − 1
(Z∗p,×) is just (Zp−1,+) in disguise!

Example: (Z∗23,×) and (Z22,+) are similar

Page 104 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Discrete-log based cryptography

Discrete logarithm in (Z∗
p,×) with prime p

So: (Z∗p,×) is just (Zp−1,+) in disguise!

I Let g be a generator of (Z∗p,×)
I Let A = g a and B = gb

• then A× B = g a × gb = g a+b mod p−1

• multiplication A× B reduces to addition a+ b
• exponentiation Ae reduces to multiplication a · e

I Requires knowledge of exponent a (and b), given A (and B)
I Finding this exponent is called discrete log
I Discrete log is hard if p is large

Example:
I discrete exp: find X that satisfies X ≡ 295 (mod 149)
I discrete log: find x that satisfies 2x ≡ 124 (mod 149)

Page 105 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Discrete-log based cryptography

Discrete logarithm problem

Discrete log problem in a cyclic group 〈g〉
Given h ∈ 〈g〉, finding n < #g that satisfies h = gn

I The discrete log problem is hard in (Z∗p,×) for large p
• solving a discrete log problem modulo p with p an n-bit prime is

about as hard as factoring an n-bit RSA modulus
I It is also hard for many other groups, e.g.,
• in cyclic subgroups of large order q of (Z∗p,×) with q≪ p
• elliptic curve groups

I Elliptic curve cryptography (ECC) (see later)
• discrete log in ECC is much harder than for (Z∗p,×)
• for same security strength, compared to RSA:

I shorter keys, signatures and cryptograms
I faster key establishment, signing and key pair generation
I but slower signature verification

Page 106 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Discrete-log based cryptography

Discrete log based crypto: key pairs

I Key pairs:
• private key: a ∈ Z#g

• public key: A = g a ∈ 〈g〉
• domain parameters: 〈g〉, the cyclic group we work in

I Similarities with RSA
• computing private key from public key is hard problem
• public key authentication is crucial for security
• there is mathematical structure

I Differences with RSA
• domain parameters: you don’t have that in RSA
• key pair generation: take random a and compute A = g a

I Key pairs for (Z∗p,×)
• private key: a ∈ Zp−1
• public key: A = g a ∈ Z∗p
• domain parameters: p and g

Page 107 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Discrete-log based cryptography

Ralph Merkle, Martin Hellman, Whitfield Diffie

Invented public key cryptography in 1976!

Page 108 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Discrete-log based cryptography Diffie-Hellman key exchange

(Merkle)-Diffie-Hellman key exchange

I public-key based establishment of a shared secret
I Alice and Bob establish a secret key KAB

• Alice has PrKAlice = a and PKAlice = A (= g a)
• Bob has PrKBob = b and PKBob = B (= gb)

I The protocol (simple static flavour): exchange of public keys

Alice −→ Bob : A
Bob −→ Alice : B

I Computation of the shared secret:
• Bob uses his private key b to compute KAB = Ab

• Alice uses her private key a to compute KAB = Ba

• Correctness: Ab = (g a)b = g a·b = (gb)a = Ba

Page 109 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Discrete-log based cryptography Diffie-Hellman key exchange

Diffie-Hellman key exchange: attention points

I Security
• eavesdropper Eve needs either a or b to compute KAB

• given 〈g〉,A and B, predicting KAB should be hard
• called the (decisional) Diffie-Hellman hardness assumption
• seems as hard as the discrete log problem but no proof (yet)

I Domain parameters: both need to work in the same cyclic group
I Public key authentication
• If Alice validated Bob’s public key, she knows only Bob has KAB

• If Bob validated Alice’s public key, he knows only Alice has KAB

I Entity authentication?
• can be done with symmetric crypto challenge-response using KAB

• along with encryption, message authentication
• often one uses h(KAB) for deriving symmetric keys from KAB

Page 110 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Discrete-log based cryptography Diffie-Hellman key exchange

Diffie-Hellman key exchange: cases

I Mutual authentication: both parties authenticate public keys
I Unilateral authentication:
• Alice authenticates Bob’s public key but not vice versa
• Alice still has guarantee that Bob is only other party having KAB

• only Bob can decipher what she enciphers with KAB

• only Bob can generate MACs with KAB

I TLS (https) mostly uses unilateral authentication
• browser authenticates public key of website
• website does not authentication public key of browser

I Static Diffie-Hellman: Alice and Bob have long-term keys
• limitation: KAB is always the same
• for symmetric crypto: requires nonces across multiple sessions
• leakage of KAB , a or b allows decryption of all past cryptograms
• wish for forward secrecy: leakage of KAB , a or b not affecting

past cryptograms

Page 111 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Discrete-log based cryptography Diffie-Hellman key exchange

Diffie-Hellman key exchange with forward secrecy

I Consider unilateral case where Bob does not validate Alice’s key
• Alice can generate fresh keypair (a,A) for each session/message
• this is called an ephemeral key pair
• leaking KAB or a only affects single session/message
• leaking b still affects all communication between Alice and Bob

I Dynamic Diffie-Hellman
• Alice generates ephemeral key pair (a,A) per session
• Bob generates ephemeral key pair (b,B) per session
• auth. of A: Alice signs (Alice,A,N) with long term PrKA

• Bob verifies Alice’s signature using the validated PKA

• in mutual authentication: also vice versa
• now leakage of KAB , a or b only affects a single session
• after the session Alice deletes KAB and a, Bob deletes KAB and b
• this offers forward secrecy

I Ephemeral key pairs in RSA would work too but very expensive

Page 112 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Discrete-log based cryptography Diffie-Hellman key exchange

Diffie-Hellman in action: e-passports

I We saw the Basic Access Control (BAC) protocol for e-passports
• terminal access to passport chip via Machine Readable Zone

(MRZ)
• restricted to less sensitive data, also on the passport paper

I There is also an Extended Access Control (EAC) protocol
• for the more sensitive biometric date, like fingerprints

(EAC is done after BAC)
• introduced later (since 2006) by German BSI
• involves two subprotocols

I Chip Authentication (CA), with certified public key from
chip, ephemeral key pair from terminal

I Terminal Authentication (TA), with certified key pair from
terminal: for giving access to biometric data

• Here we sketch how CA works

Page 113 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Discrete-log based cryptography Diffie-Hellman key exchange

Chip Authentication (from EAC)

PsP
[g sp , Id]PrKCA

(sp is static DH key)
// Rdr

PsP Rdr
g sR

(sR is ephemeral DH key)
oo

K = g sP sR :fresh shared secret;
derived to two keys: Kenc,Kmac

PsP
Kmac{g sR}

// Rdr

Rdr now authenticated PsP as it knows
I PsP must have shared secret K
I so PsP has private key sP matching the public key g sP

Page 114 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Discrete-log based cryptography Diffie-Hellman key exchange

NSA breaking encrypted connections [for info]

CCS 2015 paper Imperfect Forward Secrecy: How Diffie-Hellman Fails in
Practice explains:
I Diffie-Hellman is used for VPNs, https websites, email, etc.
I Many implementation use the same domain parameters
• a 1024 bit prime p
• a particular generator g ∈ Zp

I A very large look-up table can be compiled
• to efficiently solve discrete log in this group
• authors estimate that this could be done for $100M
• NSA may have budget for that

I This could explain suggestions in Snowden documents that the NSA
has access to encrypted connections.

Page 115 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Discrete-log based cryptography Diffie-Hellman key exchange

Student feedback after exam in 2012

Page 116 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Discrete-log based cryptography Diffie-Hellman key exchange

El Gamal: discrete-log based encryption

Encryption with public key A
I convert cleartext M to element m ∈ 〈g〉
I randomly generate ephemeral key pair (r ,R = g r)
I define cryptogram as {m}A =

(
R, m · Ar

)
I multiplying m with random Ar and giving R as side info
Decryption with private key a — such that A = g a

I Assume ciphertext c = (c1, c2), with ci ∈ 〈g〉
I define recovered plaintext as [(c1, c2)]a =

c2
(c1)a

I removing the factor Ar by dividing by Ra = g ar = Ar

Correctness
I For A = g a we get:

[{m}A]a = [R,m · (g a)r]a =
m · g a·r

(g r)a
=

m · g a·r

g a·r = m

Page 117 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Discrete-log based cryptography El Gamal encryption and DSA signature

DSA: discrete-log based signatures

Signing with private key a of message m
I randomly generate ephemeral key pair (r ,R = g r) with

gcd(r ,#g) = 1

signa(m) =
(
R,

h(m)− a · R
r

mod#g
)

Verification of m, (s1, s2) with public key A ∈ 〈g〉
I check the equation:

gh(m) ??
=

(
s1
)s2 · As1

�

�
	Notice: no decryp-

tion, just checking

Correctness
I r · s2 ≡ h(m)− a · R = h(m)− a · s1mod#g so that:
I h(m) ≡ r · s2 + a · s1 (mod #g) and so:
I gh(m) = g r ·s2+a·s1 =

(
g r
)s2 · (g a

)s1 = Rs2 ·
(
g a
)s1 = (s1)s2 · As1

Page 118 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Discrete-log based cryptography El Gamal encryption and DSA signature

Example calculation for El Gamal

Take G = Zp for p = 107 and g = 10 ∈ G with order q = 53.
I Keys: private a = 16; public A = g a = 1016 = 69mod 107
I Encryption: of m = 100 ∈ G with random r = 42 gives:

{m}A = (g r ,Ar ·m) = (1042, 6942 · 100) = (4, 11)

I Decryption: of (4, 11) is 11
4a

• 4a = 416 = 29 and 1
29 = 48mod 107

• Hence 11
4a = 11 · 48 = 100mod 107

(For modular calculation use eg: http://ptrow.com/perl/calculator.pl)

Page 119 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Discrete-log based cryptography El Gamal encryption and DSA signature

Example calculation for DSA

Still with the same p = 107, g = 10, q = 53, a = 16,A = 69,
I Sign: H(m) = 100 with random r = 33
• We have g r = 1033 = 102mod 107
• and: 1

r = 1
33 = 45mod 53

• next:

H(m)− a · g r

r
= (100− 16 · 102) · 45 = 5 · 45 = 13mod 53

• The signature is thus: (102, 13).

I Verification: of (s1, s2) = (102, 13)
• first, gH(m) = 10100 = 34mod 107
• and also: (s1)s2 · As1 = 10213 · 69102 = 62 · 4 = 34mod 107.

Page 120 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Discrete-log based cryptography El Gamal encryption and DSA signature

Background [for info]

I The primes p = 107 and q = 53 in the example satisfy p = 2q + 1
I The order of Z∗p is p − 1 = 2q
I 〈g〉 is a subgroup of Z∗p with order q
• all elements in 〈g〉, except 1, have order q
• If this subgroup is of prime order q, then the “Decisional

Diffie-Helmann” assumption is believed to hold
I We say we have an embedding of groups:
• group (Z∗p,×) of order p − 1 with p a prime
• group 〈g〉 of order #g = q with q a prime, (Zq,+) in disguise

I For some security strength s, q can be taken much smaller than p
• e.g. for s = 128, 256-bit |q| ≥ 256 is enough but |p| ≥ 3000
• decreasing |p| or |q| would reduce security s
• see www.keylength.com

Page 121 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Discrete-log based cryptography El Gamal encryption and DSA signature

Background on Elliptic Curve Cryptography (ECC)

I Koblitz and Miller proposed the use of elliptic curves for
cryptography in the mid 1980’s
• group operation is given by addition of points on a curve
• mainstream public key crypto nowadays: TLS 1.3, e-passports,

. . .
I Allows discrete log based crypto in EC groups
• EC Diffie-Hellman, EC Elgamal, EC DSA
• but much shorter public keys for same security strength s
• richer functionality, e.g., pairings (advanced, cool topic)

I Key lengths (in bits) for comparable strength (source: NIST):

security modulus length
strength RSA and classical RSA ECC

80 1024 160
128 3072 256
256 15360 512

Page 122 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Discrete-log based cryptography Elliptic curves

http://ptrow.com/perl/calculator.pl
www.keylength.com

Addition on an elliptic curve over the real numbers

Elliptic curves are given by equations such as: y2 = x3 + ax + b

Addition P + Q = R and P ′ + P ′ = 2 · P ′ = R ′ is given by:

There are also explicit formulas for such additions.

Page 123 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Discrete-log based cryptography Elliptic curves

Example curve: y 2 = x3 + 2x + 6 over finite field Z37

x

y

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b
(1, 3)

Page 124 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Discrete-log based cryptography Elliptic curves

Repeated addition: n · P goes everywhere

x

y

bb

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

Given Q = n · G , finding n involves basically trying all options

Page 125 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Discrete-log based cryptography Elliptic curves

Discrete Log and public keys for ECC

ECC uses additive notation so discrete log problem looks a bit funny:
scalar multiplication: [n] · G = G + · · ·+ G
Given [n] · G and G , it is hard to find the scalar n.

Key pairs in ECC:
I Domain parameters: the prime p, the constants a and b, generator

G and its order #G
I Private key: an integer a ∈ Z#G

I Public key: a point on the curve A = [n]G

Page 126 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Discrete-log based cryptography Elliptic curves

On PGP (by Phil Zimmermann, 1991)

Use fresh session key K for efficiency:

A −→ B : {K}PKB
, K{m, [h(m)]PrKA

}

This is basically what PGP (= Pretty Good Privacy) does, e.g., for
securing email. It is efficient, because m may be large.

Page 128 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Public key protocols

Needham-Schroeder two-way authentication

I Simple protocol, originally proposed in 1978
I uses RSA encryption to achieve authentication
I Serious flaw discovered only in 1996 by Gavin Lowe
• required formal methods, namely model checking

I Can simply be fixed
I Fix can be seen as just applying appropriate domain separation

Page 129 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Public key protocols

Needham-Schroeder: original version + attack

Protocol Attack

A −→ B : {A,NA}PKB

B −→ A : {NA,NB}PKA

A −→ B : {NB}PKB

A −→ T : {A,NA}PKT

T −→ B : {A,NA}PKB

B −→ T : {NA,NB}PKA

T −→ A : {NA,NB}PKA

A −→ T : {NB}PKT

T −→ B : {NB}PKB

Interpretation of the attack
If A is so silly to start an authentication with an untrusted T (who can
intercept), this T can make someone else, namely B, think he is talking
to A while he is talking to T .

Page 130 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Public key protocols

Needham-Schroeder: a fix

A −→ B : {A,NA}eB
B −→ A : {NA,B,NB}eA
A −→ B : {NB}eB

Page 131 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Public key protocols

Blind signatures: what is the point?

I Suppose A wants B to sign a message m, where B does not know
that he signs m
• Compare: putting an ordinary signature via a carbon paper

I Why would B do such a thing?
• for anonymous “tickets”, e.g., in voting or payment
• the private key may be related to a specific (timely) purpose
• hence B does have some control

I Blind signature were introduced in the earlier 80s by David Chaum

Page 132 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Public key protocols Blind signatures

Blind signatures with RSA

Let (n, e) be the public key of B, with private key (n, d).

(1) A wants to get a blind signature on m; she generates a random r ,
computes m′ = (r e) ·mmod n, and gives m′ to B.

(2) B signs m′, giving the result k = [m′](n,d) = (m′)d mod n to A

(3) A computes:

k

r
=

(m′)d

r
=

(r e ·m)d

r
=

r ed ·md

r
≡ r ·md

r
= md = [m](n,d)

Thus: B signed m without seeing it!

Page 133 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Public key protocols Blind signatures

Blind signatures for e-voting tickets

I Important requirements in voting are (among others)
• vote secrecy
• only eligible voters are allowed to vote (and do so only once)

I There is a clear tension between these two points
I Usually, there are two separate phases:

(1) checking the identity of voters, and marking them on a list
(2) anonymous voting

I After step 1, voters get a non-identifying (authentic, signed) ticket,
with which they can vote

I Blind signatures can be used for this passage from the first to the
second phase

Page 134 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Public key protocols Blind signatures

Blind signatures for untraceable e-cash

Assume bank B has key pairs (ex , dx) for coins with value x

C ←→ B : authentication steps
C −→ B : “I wish to withdraw e15, as a e5 and a e10 coin”
C −→ B : r e51 · h(c1), r

e10
2 · h(c2) (with ri , ci random)

B −→ C :
(
r e51 · h(c1)

)d5 = r1 · h(c1)d5 ,
(
r e102 · h(c2)

)d10 = r2 · h(c2)d10

As a result
I C can spend signed coins (c1, h(c1)

d5 , 5); value is checkable
I the bank cannot recognise these coins: this cash is untraceable
I double spending still has to be prevented

(either via a database of spent coins, or via more crypto)

Authorities don’t want such untraceable cash, because they are afraid of
black markets and losing control (see Bitcoin, later on)

Page 135 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Public key protocols Blind signatures

Overview: security goals and public-key crypto

I Confidentiality
A −→ B : {m}PKB

More efficiently, via a (symmetric) session key K :

A −→ B : {K}PKB
,K{m}

I Authentication Challenge-response with nonce N

A −→ B : {N,A}PKB

B −→ A : N
or A −→ B : N

B −→ A : [N,B]PrKB

I Integrity & non-repudiation, with hash function h,

A −→ B : m, [h(m)]PrKA

Page 136 of 136 Jacobs and Daemen Version: fall 2017 Computer Security
Public key protocols Blind signatures

	Problems in key management
	Public key crypto
	Math basics for public-key cryptography
	The RSA cryptosystem
	Rolling out public key cryptography
	Public key authentication
	DigiNotar case study
	On electronic signatures

	Discrete-log based cryptography
	Diffie-Hellman key exchange
	El Gamal encryption and DSA signature
	Elliptic curves

	Public key protocols
	Blind signatures

