
Security
Assignment 6, Friday, October 20, 2017

Deadline: Monday, November 13, 09:00 sharp!

Goals: After completing these exercises successfully you should be able to

• design protocols to achieve freshness goals;

• correctly identify properties of hash functions;

• reason about practical applications of hash functions.

Marks: You can score a total of 100 points.

1. (0 points) In yesterday’s lecture, an app was demonstrated that reads and shows the data
stored on Dutch identity documents: ReadID - NFC Passport Reader.

(a) If you have (access to) an NFC-enabled Android, download the app and try reading
your own identity document.

(b) Find out whether or not the company behind ReadID, InnoValor, collects the data from
the documents that are read via the app.

2. (35 points) In last week’s lecture, we saw the following protocol to set up a symmetric key
using a trusted third party that supplied ‘tickets’, containing a new key KAB (i.e. the TTP
generates a new KAB for each execution of the protocol).

1. B −→ TTP : “key request for B to A”
2. TTP −→ B : KB{KAB}, ticket = KA{KAB}
3. B −→ A : ticket,KAB{m}

The lecture slides suggest several additional ‘services’ that the protocol could provide. In
this exercise, we will extend the above protocol to better resist replay attacks. Incrementally
extend the protocol such that:

(a) .. Bob does not accept a replayed KAB ;

(b) .. Bob does not accept a ticket that does not belong to the KAB he receives with it;

(c) .. the TTP does not accept a replayed key request;

(d) .. Alice does not accept a replayed ticket (and thus: a replayed encrypted message).
Hint: involve Alice at an earlier point in the protocol.

3. (35 points) In this exercise we consider the following properties for hash functions H:

(P) Preimage resistance: given a bit string y output by H, it is infeasible to find a bit string
x such that H(x) = y,

(P2) Second preimage resistance: given a bit string x it is infeasible to find a different bit
string x′ (x 6= x′) such that H(x) = H(x′).

(C) Collision resistance: it is infeasible to find two bit strings x 6= x′ s.t. H(x) = H(x′),

(F) Fixed length: the length of output is fixed and does not depend on the input size (this
is usually not a formal requirement, but it is, in practice, often the case).

We define possible hash function candidates h. Do they meet each of the properties (P),
(P2), (C) and (F)? Explain briefly for all properties (for each hash function).

(a) The function is defined as h(x) := 11111011100.

https://play.google.com/store/apps/details?id=nl.innovalor.nfciddocshowcase&hl=en

(b) The function is defined as h(x) := x‖x (where ‖ is concatenation, that is, x is repeated).

(c) Assume that H1,H2 are two hash functions that meet requirements (P), (P2), and (F).
The function H1 also meets (C), whereas H2 does not meet (C). The function is defined
as h(x) := H1(x)‖H2(x).

(d) Assume that H is a hash function that meets all four requirements (C), (P), (P2), and
(F). The function is defined as h(x) := H(|x|) (where |x| is the bit length of x).

(e) Assume that H is a hash function with output bit-length N that meets all four require-
ments (C), (P), (P2), and (F). The candidate function is defined as

h(x) :=

{
0N , if x = 0|x|

H(x), otherwise;

that is, if the input of function h is such a bit-string all bits are zero, it outputs an
all-zero bit-string of length N . Otherwise, it outputs the same as H.

4. (30 points) The following authentication protocol makes use of the Lamport hash construc-
tion (sometimes simply called ‘hash chain’). The construction simply consists of repeatedly
applying a hash function to an input value. We write hn(x) to denote hashing x n times,
e.g. h3(x) = h(h(h(x))). Each user chooses a password pw and hashes this n times. He/she
then sends it to the server. Let us assume that initially, n = 10 000. The server then stores
a tuple (user, n, Y = hn(pw)) for each user in a database. Users can now authenticate to
the server using the following protocol:

1. A −→ S : A
2. S −→ A : n
3. A −→ S : X = hn−1(pw)

The server checks if h(X) = Y , then decrements n and sets Y := X. So, after a successful
run of this protocol the server holds a new tuple (user, n− 1, Y = hn−1(pw)).

(a) Can you think of an attack (here, relay or simple man-in-the-middle is not considered
an attack), after which the adversary can gain access multiple times without the user
being present? Use the arrow notation (A −→ B : message) in your explanation.

(b) At some point n = 0. Is it safe to start over again and put n back to 10 000? Briefly
explain your answer.

(c) The amount of hashes the user has to compute differs depending on n. Suppose the
user locally stores

hi(pw) for i = 0, 1000, 2000, . . . , 9000 .

How many hash function evaluations does the user have to make on average (for a single
evaluation of the protocol)?1

(d) One way to construct a one-time pad that uses a Lamport hash is by starting from the
hash of a random starting value r and generating an infinite sequence of h(r), h(h(r)),
Is this way to construct a one-time pad secure? Briefly motivate why, or describe an
attack. Hint: consider what happens when a part of the plaintext is predictable.

1This approach is a naive solution to the pebbling problem. Schoenmakers recently introduced an optimal
algorithm: http://www.win.tue.nl/~berry/pebbling/Schoenmakers-FC16-slides.pdf.

http://www.win.tue.nl/~berry/pebbling/Schoenmakers-FC16-slides.pdf

