

Security

Assignment 13, Friday, December 22, 2017

Handing in your answers:

- Include your name and student number **in** the document (they will be printed!), as well as the name of your teaching assistant (Bart or Joost). When working together, include **both** your names and student numbers.
- Submit one single **pdf** file – when working together, only hand in **once**.
- Hand in via Blackboard, before the deadline.

Deadline: Monday, January 15, 09:00 sharp!

Goals: After completing these exercises successfully you should be able to

- be able to perform all operations in the context of RSA signatures.
- perform computations for ElGamal signatures;
- understand the dangers involved in reusing randomness;

Marks: You can score a total of 100 points.

1. **(30 points)** Consider RSA as a signature scheme. For each question, give intermediate steps to show how you got your results. Where it is not requested otherwise, you are allowed to use a calculator—provided that you specify clearly what you calculate.
 - (a) Alice has chosen primes $p = 11$ and $q = 19$, compute n and $\varphi(n)$.
 - (b) Take $e = 7$ and, applying the *extended Euclidean algorithm*, compute d such that $d \cdot e \equiv 1 \pmod{\varphi(n)}$. Now (n, e) and (n, d) are Alice's public and private keys, respectively.
 - (c) Compute Alice's signature on $m = 16$. Use $h(m) = m$ as the hash function.
 - (d) Verify the signature using the corresponding public key. Use *square-and-multiply*.

2. **(40 points)** DSA.

Suppose $G = \mathbb{Z}_p^*$ for $p = 29$, with generator $g = 3$. For the order of G , we write $\#g = \varphi(p)$ (since g is its generator). In this exercise we will use the (otherwise completely insecure) hash function $h(m) = m$. Let's assume that Alice's private key is $a = 21$. Please make sure to use the correct modulus for each step. Show intermediate steps.

- (a) Determine Alice's corresponding public key A .
- (b) Sign the message $m = 15$ using DSA with random value $r = 5$.
 - i. Verify that r and $\#g$ are relatively prime.
 - ii. Compute $s_1 = R = g^r \pmod{p}$.
 - iii. Compute $r^{-1} \pmod{\#g}$.
 - iv. Compute $s_2 = (h(m) - a \cdot R) \cdot r^{-1} \pmod{\#g}$
- (c) Verify that the signature (s_1, s_2) is correct on message m using Alice's public key A .
 - i. Check that $1 \leq s_1 < p$.
 - ii. Compute $v := s_1^{s_2} \cdot A^{s_1} \pmod{p}$.
 - iii. Verify $g^{h(m)} \stackrel{?}{=} v$.

3. **(30 points)** Predictable ‘randomness’.

When using the ElGamal scheme, it is crucial that one uses a fresh random number r for each use. However, true random numbers are not that easy to obtain - in practice, they are typically generated *pseudo*-randomly, and sometimes this is done poorly. When this is done in an insecure fashion, an attacker could influence the randomness, cause a system to use the same ‘random’ value twice or even predict the randomness completely.

Note: for the following questions, carefully consider which parameters are publicly available (and thus also available to an attacker).

- (a) Consider ElGamal encryption (let $G = \mathbb{Z}_p^*$ for some prime p). What can an attacker learn if the randomness r is known, and he intercepts an ElGamal ciphertext? Show how!
- (b) Now consider DSA from the lecture. Show what an attacker can learn when the randomness r is known, and he obtains an signature (s_1, s_2) (with the corresponding message m). Again, show how!
- (c) Which of these scenarios has more devastating consequences? For example, consider the security of other ciphertexts and signatures for which the used randomness r' is still unknown.