
Computer Security: Security
at Work
B. Jacobs and J. Daemen
Institute for Computing and Information Sciences – Digital Security
Radboud University Nijmegen
Version: fall 2017

Page 1 of 31 Jacobs and Daemen Version: fall 2017 Computer Security

Outline

Bitcoins
The ledger

Conclusions
Final remarks

Page 2 of 31 Jacobs and Daemen Version: fall 2017 Computer Security

Security issues for financial transactions

I Confidentiality Who should know about your transactions: the
receiver, the bank, the authorities?

I Integrity
• The intended transaction amount and receiver should be the

actual amount and receiver
• You should not be able to create money yourself

I Availability The transaction should be carried out when intended
I Authenticity Only the owner of the amount can transfer it
I Non-repudiation You cannot deny your transactions later on

Page 4 of 31 Jacobs and Daemen Version: fall 2017 Computer Security
Bitcoins

Electronic money (also known as: e-cash)

Especially for e-cash there are money-creation challenges:
I minting: creation of fresh e-coins, out of nothing
I double-spending: using existing e-coins multiple times in different

transactions

Page 5 of 31 Jacobs and Daemen Version: fall 2017 Computer Security
Bitcoins

Reasonable starting point

I Alice goes to her bank, orders 10e, and gets a unique serial number
N in return

I She then transfers these 10e to Bob via the signed message:[
I, Alice, transfer 10e with serial number N to Bob

]
dAlice

I Bob can check via the bank if the number N has already been
“spent”
• hence the bank can track all e-cash transactions
• this approach requires a centralised trusted third party (TTP)�

�
	

�
�

�
�Can we do this peer-to-peer, without the bank?

Page 6 of 31 Jacobs and Daemen Version: fall 2017 Computer Security
Bitcoins

Enter Bitcoin

I What is ? Decentralised cryptocurrency!
• Bitcoin is the most widely used among such currencies
• it uses cryptography to secure transactions and control the

creation of money

I Developed by “Satoshi Nakamoto” (only a pseudonym)
• paper published in 2008
• open source software in 2009, see github.com/bitcoin

I Bitcoins can be bought and sold easily, eg. via bitonic.nl;
payment in shops possible via eg. bitkassa.nl

I Bitcoins undermine current financial control
• used for illicit purchases (recall Silk Road)
• little stability, eg. in bankruptcy of the Mt.Gox exchange (850,000

BTC missing ∼ $450 million)
• volatile value

Page 7 of 31 Jacobs and Daemen Version: fall 2017 Computer Security
Bitcoins

Bitcoin value, against US$ (2012 – dec. 2017)

(source: bitcoincharts.com, dec. 2017)

Page 8 of 31 Jacobs and Daemen Version: fall 2017 Computer Security
Bitcoins

Main points about bitcoin

(1) Public key cryptography and hashing, as main ingredients of
transactions
• hence we can understand it in this introductory course
• explanation here is conceptual, not literally following the code

(2) Peer-to-peer networking: transactions are sent out to the network
where all bitcoin nodes can see it within a minute

(3) The public ledger (NL: groot/kas-boek): a blockchain is maintained
as a single list all transactions. Every node on the network has a
copy, so that the balance of every address (account) is known — but
not necessarily who the owner is.
• this blockchain is now the real hype

Capitalised Bitcoin is used for the system/protocol, and lower-case
bitcoins for the currency units (or BTC, or)

Page 9 of 31 Jacobs and Daemen Version: fall 2017 Computer Security
Bitcoins

Bitcoin transaction (commonly denoted as: tx)

inputs:
earlier

transactions
received

by the payer

•
''

•

...
�
�

�
�Transaction

77

''

...

•

77

•

outputs:
beneficiaries
(payees)
of this

transaction

I The sum of the bitcoin amounts in the inputs must exceed the sum
of the amounts in the outputs

I The difference is the transaction fee, which is for the succesful
“miner” (see later)
• In practice a non-zero fee is needed to get processed

Page 10 of 31 Jacobs and Daemen Version: fall 2017 Computer Security
Bitcoins

Bitcoin transaction arithmetic

I Suppose that Alice wants to pay 5 BTC to Bob, . . .
I . . . and that Alice has been payed herself in two previous

transactions, one with 2.5 BTC and one with 4 BTC.
How to proceed?

I For the 5 BTC payment to Bob, Alice can use:
• inputs: both these transactions, of 2.5 BTC and 4 BTC
• outputs: 5 BTC to Bob, and 1,49999 BTC to herself
• The transaction fee is thus:

(2.5+ 4)− (5+ 1, 49999) = 0.0001 BTC

I if 1 BTC = 800e, this fee is 8 eurocent.

Page 11 of 31 Jacobs and Daemen Version: fall 2017 Computer Security
Bitcoins

Transaction inputs, in a diagram

(source: Ken Shirriff’s blog, feb. 2014)

Page 12 of 31 Jacobs and Daemen Version: fall 2017 Computer Security
Bitcoins

Bitcoin addresses and keys

I A Bitcoin address is a hash of a public key
• Actually, it involves several SHA-256 and RIPEMD-160

operations, but conceptually we treat it has a single hash
• Notation: address = h(pubkey)
• The key is a 256 bit ECDSA public key

I A user may have/generate/use multiple addresses
• the addresses are all public, but you can hide the link between

you and your addresses (eg. via mixers)
• this provides (some) transaction privacy
• using multiple addresses gives an additional level of obfuscation

When do you need your public/private key pair?
I to claim (redeem) an incoming transaction, by revealing your public

key, as pre-image of the hash/address
I to sign an outgoing transaction, using the incoming amount

Page 13 of 31 Jacobs and Daemen Version: fall 2017 Computer Security
Bitcoins

Bitcoin transaction message structure

Assume:
I Alice (A) wants to transfer b bitcoins to Bob (B) and c bitcoins to

Charly (C); A knows the addresses of B,C
I this transaction involves only two input transactions tx1, tx2, to

addresses h(e1), h(e2) of Alice — with private keys d1, d2

Page 14 of 31 Jacobs and Daemen Version: fall 2017 Computer Security
Bitcoins

Bitcoin transaction message structure, continued

The transaction message is a concatenation | of three parts:

A −→ Network : h(m) | m where m = in | out

The hash h(m) is used as identifier of the transaction, and:
I out = b | addressB | c | addressC
I in = idtx1 | [idtx1 , out]d1 | e1 | idtx2 | [idtx2 , out]d2 | e2
(The signatures [−]di are actually more complicated signing scripts)

Page 15 of 31 Jacobs and Daemen Version: fall 2017 Computer Security
Bitcoins

Verifying a transaction

The verification of transaction involves several aspects:
(1) checking the identifier hash in h(m) | m
(2) checking the signature in the input · · · | [idtx, out]d | e | · · ·
(3) looking up (in the “block-chain”) the previous transaction tx

corresponding to the identifiers idtx in the inputs, and checking that
it is “confirmed”
• what this precisely means follows below

(4) Checking that the public keys in the current transaction are the
pre-images of the addresses in these previous transactions

(5) Checking that the incoming amounts are at least the outgoing ones.

Page 16 of 31 Jacobs and Daemen Version: fall 2017 Computer Security
Bitcoins

Distributed consensus

I Transactions must be approved by the “network” or “community”

I A cheater could try to quickly approve his own transactions
• in order to prevent this, checking is made really difficult
• more concretely, it requires much computational power
• this work is called proof-of-work or mining

I But then: who would want to do so much work?
• solution: make mining into a competition
• the winner is rewarded, . . . , with bitcoins

Page 17 of 31 Jacobs and Daemen Version: fall 2017 Computer Security
Bitcoins The ledger

The block chain, as public ledger

I The block chain is a shared public ledger on which the whole Bitcoin
system relies. All confirmed transactions are included permanently in
this single block chain.
• Watch ongoing activity eg. at blockchain.info or

blockexplorer.com

I Mining is used to confirm waiting transactions by including them in
the block chain. It enforces a chronological order in the block chain.

I To be confirmed, transactions must be packed in a block via a
matching hash rule that will be verified by the network. These rules
prevent modification of previous blocks.

Page 18 of 31 Jacobs and Daemen Version: fall 2017 Computer Security
Bitcoins The ledger

Adding blocks to the chain

I Bitcoin transactions are broadcast to “the network”, and are received
by peers, that may collect them into new blocks

I These blocks need to contain the solution to a hash puzzle; only
then can they be added to the block-chain, via a reference to the
previous block
• the peer that solves the puzzle gets all the transaction fees, plus

a fixed number of bitcoins (currently 25)
I The difficulty of the puzzle is regularly adjusted so that new blocks

are added roughly every 10 minutes
I If by chance there are (nearly) simultaneous solutions:
• the chain may fork, but only temporarily because of the rule:

extend only the longest path
• after a fork, work continues on both paths, until one is extended,

and work on the other path stops

Page 19 of 31 Jacobs and Daemen Version: fall 2017 Computer Security
Bitcoins The ledger

Proof-of-work: the hash puzzle

I A peer may decide to collect, say k = 100 transactions, check them
all, and concatenate them to a string

s = last_block_ref | peer_adr | tx1 | · · · | txk

I The hash puzzle is now to find a nonce/number N so that:

h(s | N) has t leading zeros

I This t ∈ N is the “target” that determines the difficulty of the puzzle
(an average solution time of 10 min. is intended)

I Once a peer claims to have found N, it can announce so, and other
peers can easily check this
• the block of k transactions is added to the block-chain

I Only if a transaction is followed by 6 blocks in the chain, it is
confirmed

Page 20 of 31 Jacobs and Daemen Version: fall 2017 Computer Security
Bitcoins The ledger

Proof-of-work demo, in Python

import hashlib, time
h = hashlib.new("sha256")
prefix_length = 6
zeros = "0" * prefix_length
counter = 0
s = "transactions-block"
unfinished = True
while unfinished:

h.update(s + str(counter))
prefix = h.hexdigest()[:prefix_length]
if prefix == zeros:

print time.clock(), counter, h.hexdigest()
unfinished = False

else:
counter = counter + 1

Page 21 of 31 Jacobs and Daemen Version: fall 2017 Computer Security
Bitcoins The ledger

Bitcoin: some final remarks

I The above explanation glosses over many details and implementation
issues (like Merkle trees)

I Bitcoin fits in internet tradition of: dump the intermediaries
• ie, put intelligence in the end-points, keep the network dumb
• but: intermediaries can be of value, for quality control

I Bitcoin is insanely environmentally unfriendly:
• Bitcoin requires more energy per year than the whole of NL

I Public authorities have difficulty coping with Bitcoin
• mixed reactions (banning, tolerating, ignoring)
• NL attitude (DNB/AFM): “there are risks”

I Anonimity of bitcoin addresses has advantages and disadvantages . . .
• grouping transactions is an active research area.

I Not so much Bitcoin, but the underlying blockchain technology has
become a complete hype
• See BJ’s article Reason yourself out of blockchains (nov’17)

Page 22 of 31 Jacobs and Daemen Version: fall 2017 Computer Security
Bitcoins The ledger

About the exam, part I

I Make sure (and check) that you are registered for the exam
(otherwise you simply cannot participate!)

I Closed book; simple calculator is provided (only +, -, *, /)
I Questions are in line with exercises from assignments
I In principle, slides contain all necessary material
• wikipedia also explains a lot

I Number theoretic theorems, propositions, lemmas:
• are needed to understand the theory
• their proofs are not required for the exam

(but do help understanding)
• need not be reproducable literally
• but help you to understand questions

Page 24 of 31 Jacobs and Daemen Version: fall 2017 Computer Security
Conclusions

About the exam, part II

What you must surely know:
(1) Calculation rules (or formulas) must be known by heart for RSA &

El Gamal en/de-cryption (but not signing), Diffie-Hellman
(2) Basic protocols for confidentiality, integrity, authentication,

non-repudiation
• both in the symmetric & asymmetric case

(3) Basic properties of cryptographic primitives: symmetric, hash
(birthday), asymmetric (PKI infrastructure)

(4) block and stream ciphers, and modes of encryption
(5) Basic number-theoretic constructs:
• modulo addition, subtraction, multiplication, division,

(extended) gcd, square-and-multiply
• generator, discrete log, order of a group/element — but no

abstract group theory

Page 25 of 31 Jacobs and Daemen Version: fall 2017 Computer Security
Conclusions

About the exam, part III

I Questions are formulated in english
• you may choose to answer in Dutch or English

(no other languages!)
I Give intermediate calculation results
• just giving the outcome (say: 68) yields no points when the

answer should be 67
I Write legibly, and explain what you are doing
• giving explanations forces yourself to think systematically
• mitigates calculation mistakes

I Perform checks yourself, whenever possible.

Page 26 of 31 Jacobs and Daemen Version: fall 2017 Computer Security
Conclusions

https://ibestuur.nl/weblog/reason-yourself-out-of-blockchains

Finally . . .

Practice, practice, practice!

(so that you can rely on skills, not on luck)

Page 27 of 31 Jacobs and Daemen Version: fall 2017 Computer Security
Conclusions

Final request

I Fill out the enquete form for Security
I This feedback is really used to improve courses!

Page 28 of 31 Jacobs and Daemen Version: fall 2017 Computer Security
Conclusions

What is computer security all about?

Original formulation
Regulating access to digital assets

More mature formulation
The protection of information and information systems against
unauthorised access or modification of information, whether in storage,
processing or transit, and against denial of service to authorised users.
Information security includes those measures necessary to detect,
document, and counter such threats.
(From: Jones, Kovacich, and Luzwick, Global Information Warfare, 2002)

Page 29 of 31 Jacobs and Daemen Version: fall 2017 Computer Security
Conclusions Final remarks

What this course tried to achieve

I Insight both in:
• basic computer security mechanisms
• design & usage issues, in organisations and in society

I Expected competences on-the-job:
• computer scientists should master technicalities
• information scientists should be able to translate & exploit the

relevance of these technicalities for the business/organisation
(there is greatest need for people who can do this)

I But ideally, you should be able to do both!

Page 30 of 31 Jacobs and Daemen Version: fall 2017 Computer Security
Conclusions Final remarks

What you read between the lines, hopefully

I Information is power
• informational power leads to societal power

I Security is about regulating access to information
• hence it has to deal with these (political) matters

I Ethical & political issues are part of the field
• you need a strong moral compass for this field
• eg. in order not to abuse access (as insider, programmer, hacker)
• or to make the right design decisions (fair, democratic, . . .)

Finally: enthusiasm in what you do makes the difference!
I not only for yourself, but also for the ones you work with
I We hope that we c onveyed some of that enthusiasm.

Page 31 of 31 Jacobs and Daemen Version: fall 2017 Computer Security
Conclusions Final remarks

	Bitcoins
	The ledger

	Conclusions
	Final remarks

