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Hash function definition

I A cryptographic hash function h takes a message m of arbitrary
length and yields an outcome h(m) of fixed length

h : {0, 1}? −→ 2N typical values for N : 160, 256, 512

I Every bit of h(m) depends in a complicated way of all bits of m
I h(m) is called the hash (value) of m. Alternative names:
• message digest
• (cryptographic) fingerprint
• verhaspelingsfunctie (please never use this term)

I A cryptographic hash function is a very powerful primitive . . .
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The ideal hash function: Random Oracle

I What would the ideal cryptographic hash function look like?
I It is called a Random Oracle (RO)
I Random Oracle can be built but is not practical
I We will try to build hash functions that behave like a RO

Random Oracle Inc.: letter answering service!
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Random Oracle Inc.

1. Message m arrives at Random Oracle Inc.
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Random Oracle Inc.

2a. If m was received earlier, manager picks it from archive. Its file will
also contain the returned response z
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Random Oracle Inc.

2b. If not in archive, employee will (randomly) generate response z
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Random Oracle Inc.

3. Manager copies response z , from archive (2a) or freshly typed (2b)

Page 9 of 52 Jacobs and Daemen Version: fall 2016 Computer Security
Hash function definition



Random Oracle Inc.

4. Manager puts file with (m, z) (back) in archive
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Random Oracle Inc.

5. Manager sends response z by courier to sender of m

Random Oracle returns unrelated responses for different messages
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Let us check this with a real-world hash function

SHAKE is one of the hash functions defined in the NIST SHA-3 standard
Let us apply SHAKE to the message Security: interesting!

SHAKE
(
“Security: interesting!”

)
= 336113159061d2163feaf7ae12ddad58

If we change a detail:

SHAKE
(
“Security: interesting?”

)
= 6548b7e6db8f86ae7f9e6d020698c5aa

We can also apply it to a file, e.g.

SHAKE
(
symmetric.tex

)
= ec02b28d5949acc3ecbaca71a10e3871
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Hash yourself!

On a (linux) command line you can run your own hash, e.g., as:
I sha256sum file
I openssl sha256 file
SHA256 is one of the hash functions defined in the NIST SHA-2 standard

Using Python
I install Python
I get CompactFIPS202.py and SHAKE.py from the security homepage
I on command line type Python SHAKE.py file

Or with Python (3) built-in hash functions
> import hashlib
> h = hashlib.new("md5")
> h.update(b"Hash that string")
> print(h.hexdigest())
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Coin-tossing by email

I Suppose Alice and Bob want to agree by email who’s cooking
tonight, using coins

I They each toss a coin, and agree:
• if the outcomes are equal, Alice prepares the dinner
• otherwise Bob does

I How to do this securely, without the possibility to cheat?
(and without a trusted third party, TTP)
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Coin-tossing by email: hash-based protocol

Assume a hash function h, and coin outcomes CA of A and CB of B

Commitment phase:

A −→ B : ZA = h(NA‖CA) with NA randomly generated by A
B −→ A : ZB = h(NB‖CB) with NB randomly generated by B

Revealing phase

A −→ B : NA,CA B checks honesty of A : ZA
?
= h(NA‖CA)

B −→ A : NB ,CB A checks honesty of B : ZB
?
= h(NB‖CB)

After this 4-email protocol both can check CA
?
= CB and arrange dinner
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Coin-tossing by email: requirements

I B cannot derive CA from zA
• NA shall be unpredictable
• having h(NA‖CA) shall not help in finding CA: one-way AKA

preimage resistant
I B cannot find NB ,N

′
B , with h(NB‖0) = h(N ′B‖1)

• Collisions may exist if ZA is shorter than NA

• Finding collision shall be computationally infeasible:
collision-resistant
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Message compression for authentication

Electronic (read: cryptographic) signatures can be legally recognized
I In Europe: EU directive 1999/93/EC
I Usage and implementation details left up to the countries
I Used for tax declaration, contracts, statements, PV, . . .
I Requires certified secure signature-creation device

In practice: a smart card chip on an ID card
I Contain secret key to generate signatures: S = Ksign{M}
I Low-bandwidth communication protocol from the 80s
I Commands and responses limited to 255 bytes
I Problem: sending 1MB pdf to chip would take over 60 seconds
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Message compression for authentication (cont’d)

Solution to the timing issue: hashing!
I PC/tablet/phone computes 256-bit hash of message Z = h(M)
I PC/tablet/phone presents Z to chip
I chip returns S = Ksign{Z} = Ksign{h(M)}

Signatures (public-key, see later) are always computed in two stages:
(1) compression of M into Z = h(M) with fast h
(2) generation of signature S = Ksign{Z} with slow Ksign
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Message compression: requirements

Outsider attack:
I Imagine: Bob agrees with Eve to buy her car for 2000 Euro by 2017
I He seals the deal by signing a message M that states this
I He hands the message M and signature S to Eve
I Forgery attack
• Eve builds M ′ with same hash as M that says 5000 Euro

S = Ksign{h(M)} = Ksign{h(M ′)}

• forgery: S is also a valid signature for M ′

• If Bob does not pay, Eve sues him using M ′ and S as evidence
I Required property: 2nd preimage resistance
• given M, finding M ′ with h(M ′) = h(M) shall be infeasible
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Message compression: requirements (cont’d)

Insider attack:
I Imagine: Eve agrees to buy a house from Bob for 300K Euro
I Eve and Bob agree on a contract M and present it to notary
I Notary signs it and it becomes official
I Forgery attack
• Eve builds M and M ′ in advance with h(M) = h(M ′)
• M mentions 300K Euro, M ′ mentions 200K Euro
• Eve and Bob meet with notary, present M and notary signs it
• Later Eve disputes payment amount and shows M ′ to back it up

I we require collision-resistance

Note:
collision-resistance implies 2nd preimage resistance but not vice versa
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Password protection on servers

I It is not wise to store user passwords on a server in the clear:
• other users (administrators) may abuse them
• hackers may break into the server and get them
• google for password leakage

I Good solution: replace passwords by actual cryptography
I Usual solution: store hashes of passwords
• after entering a password, the server computes the hash and

compares it to the data base entry of the user
• hash function requirement: given h(M), it is hard to find M:

preimage resistance
The password file then looks like this:

user password hash
bart h

(
passwd1

)
peter h

(
passwd2

)
...

...
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Password protection on servers (cont’d)

What can a hacker do with such a password file?

user password hash
bart h

(
passwd1

)
peter h

(
passwd2

)
...

...

Dictionary attack: hashing plausible passwords until we have a match
I try words from dictionary and common names: extremely fast
I if password policies apply: build passwords from a dictionary

combined with numbers, special characters and capitalization: very
fast

I try all combination of characters up to some length (e.g. 8): fast
I for reasonable protection: original passphrases of sufficient length
see https://youtu.be/7U-RbOKanYs
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Password protection on servers (cont’d)

What can a hacker do with such a password file?

user password hash
bart h

(
passwd1

)
peter h

(
passwd2

)
...

...

Attention point: multi-target aspect
I h

(
passwdGuess

)
can hit any entry in the file

I success probability increases with number of entries
I probability of bad passwords increases with number of entries
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Password protection: diversification

I Preventing multi-target aspect by diversifying hash input
I Username-based:
• include unique username in hash input: h

(
username;passwd

)
• attempt must be of the form h

(
username;passwdGuess

)
• so each attempt is dedicated to a single user’s password
• prevent collisions between usernames on different servers:

include servername, e.g., URL
• prevent leakage of users cycling between passwords: include

password serial number
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Password protection: salting

I Preventing multi-target aspect by diversifying hash input
I Salt-based:
• include random salt per user: h

(
salt;passwd

)
• if salt is unique per user: same effect as username-based
• most commonly used, mostly for historical reasons
A salted password file looks like this:

user salt hash
bart bla h

(
bla, passwd

)
peter aap h

(
aap, passwd

)
...

...
...

Most commonly used — but not by LinkedIn, as became clear when its
database of 6.5M logins leaked in June 2012.
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Intermezzo: domain separation

I Salting is an application of domain separation
I A hash function h can be used to build two hash functions h0 and

h1:
• h0(M) = h(0|M)
• h1(M) = h(1|M)
• if h behaves like a RO, both h0 and h1 behave like RO’s

I Generalization: a hash function can be used to build 2n hash
functions
• ha(M) = h(a|M)
• with a any n-bit string

I many protocols fail due to lack of domain separation
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Password protection: key stretching

I Described attacks are economical because hashing is cheap
• designed for speed: desirable in most applications
• cost decreases over time due to Moore’s law
• plus: dedicated hardware for hashing (due to Bitcoin, see later)

I Strength of password may reduce from 10K Euro in 2010 to < 1
Euro in 2020

I Approach: artificially slow down the hashing: key stretching
I Traditional solution: storing xN computed as

x0 = 0 and xn+1 = h(xn|password|salt).

I Modern solution: have dedicated resource-hungry hash functions
• result of open contest: https://password-hashing.net/
• principle: cost/hash shall not decrease with increasing resources

I Balance between convenience (latency) and security (cracking cost)
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Hash application: integrity check

I Suppose you run out of disc space and wish to store a large file M
“in the cloud” — so on someone else’s computer — but you worry
about (detecting) integrity violations

I The solution is:
• store M remotely
• keep Z = h(M) locally

I After retrieving the file, say M ′, verify h(M ′)
?
= Z

• if h(M ′) = Z , you know M ′ = M.
• unless someone found M ′ with h(M ′) = h(M)
• this requires 2nd preimage resistance

I The same technique is used in other situations, e.g.
• downloading software (hash must be stored elsewhere, or be signed)
• protecting evidence in forensic investigation, etc.
• trusted platform module (TPM)
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Originality claim for banned publication
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Last slide of Roel Verdult’s Usenix Aug’2013 presentation, after forced
withdrawal of the paper on Megamos Chip vulnerabilities. Article was
finally published in 2015

Application requires preimage resistance
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The traditional hash function properties

Traditionally, from a cryptographic hash function h one expects the
following properties:
(1) preimage resistance: given a hash value x , finding an m with

h(m) = x shall have expected cost 2n hash function computations

(2) second preimage resistance: given m, finding m′ 6= m with
h(m) = h(m′) shall have expected cost 2n hash function
computations

(3) collision resistance: finding any pair m 6= m′ with h(m) = h(m′)
shall have expected cost 2n/2 hash function computations

These cost measures are the ones realized by a random oracle.
Collision resistance is only 2n/2: so-called birthday bound
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Birthday paradox

In a group of 23, the chance that two have same birthday is above 1
2

I Surprising . . . at first sight
I Let’s study it: build group by add 1 person at a time
• 1 person A: probability of birthday clash is 0
• Add B: probability that it clashes with A is 1/365
• Add C : probability that it clashes with A or with B is 2/365
• Add i-th person: probability it clashes with one i − 1 is

(i − 1)/365
I Probability of a birthday clash for i people is sum of all these:

1+ 2+ 3 . . . i − 1
365

=
(1+ i − 1) + (2+ i − 2) . . .

365
=

i(i − 1)
2 ∗ 365

I This becomes equal to 1/2 when i(i − 1)/(2 ∗ 365) ≈ 1/2 or
i ≈
√
365
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Birthday paradox (once more, with precision)

This slide is for information only!
I Let us compute the probability of non-collision
I Build group by add 1 person at a time
• 1 person A: prob. of no clash is 1
• Add B: prob. of no clash with A is 1− 1/365
• Add C : prob. of no clash with A or with B is 1− 2/365
• Add i : prob. of no clash is 1− (i − 1)/365

I Probability of no clash is product. Using 1− ε ≈ e−ε:

i∏
j=1

(
1− j

365

)
≈

i∏
j=1

e−
j

365 = e−
i(i−1)
2×365

Setting this equal to 1/2 gives i(i − 1)/2 ∗ 365 = ln(2) or
i(i − 1) ≈ 506 = 23× 22.
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Collision probability

In a set of i hashes, the chance that two are equal is about i2/2n+1

I Same reasoning as birthday paradox:
• we assume random hashes instead of random birthdays
• domain size: 2n instead of 365

I i2/2n+1 becomes close to 1/2 if i2 ≈ 2n so:

The expected effort for finding a collision in a good n-bit cryptographic
hash function is close to

√
2n = 2n/2 hash function evaluations.
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End of the 80s: Merkle-Damgård

Difficulty: how to build a function accepting input with any length?

I Mode of use of a fixed-input-length compression function f
I Collision-resistance preserving
• collision in hash function implies collision in f
• implies fixing IV and code length of message in padding

I Reduces design of big hash function to design of small f
I Dominated hash function design for almost 20 years
I Even today some people think this is the way to do it
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Davies-Meyer mode for compression function f

How to build an efficient collision-resistant compression function?

I Idea: use a block cipher with feedforward
• due to Merkle-Damgård proof: collision-resistance preservation
• without feedforward it is trivial to generate collisions for f

I Initially DES was proposed
• problem: block size too small for
• generating a collision takes only 2n/2 = 4 billion DES

computations
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MD5 and standards SHA-1 and SHA-2

I MD5 [Ron Rivest, 1991]
• based on MD4 that was an original design
• Merkle-Damgård and Davies-Meyer using dedicated block cipher
• security based on addition, rotation and XOR: ARX
• 128-bit digest

I SHA-1 [NIST, 1995] (after SHA-0 [NIST, 1993])
• designed at NSA, mostly a rip-off of MD5
• SHA stands for Secure Hash Algorithm (wishful thinking)
• 160-bit digest

I SHA-2 series [NIST, 2001 and 2008]
• reinforced versions of SHA-1, again coming from NSA
• 6 functions with 224-, 256-, 384- and 512-bit digest

I no motivation or rationale was ever given for any of them
I no actual innovation since 1991
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The MD5 saga

I 1993: compression function shown weak
I In the following years it was adopted widely in SSL etc.
I 1996: collisions in compression function
I 2003-2004: great advances in analysis of MD5
I 2004: actual collisions for MD5 found by Prof. Wang
I despite weaknesses, corporate IT co. unwilling to abandon MD5
• yes, but these weaknesses are just theoretical

I 2005: Lenstra, Wang, and de Weger generate fake TLS certificates
I 2008: Nostradamus attack (next slide)
I 2010-2012: Espionage malware Flame creates fake Microsoft update

certificates.
I Today MD5 largely replaced by SHA-256 but not everywhere
I Lessons learnt
• in retrospect MD5 is a very weak hash function
• put in the field (internet) without considering public scrutiny
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Nostradamus attack with MD5

In 2008, before the US-presidential elections, 3 Dutch researchers
(M. Stevens, A. Lenstra, B. de Weger) constructed 2 different messages:

m1 = · · · Obama will be the next president · · ·

m2 = · · · McCain will be the next president · · ·

with the same hash: md5(m1) = md5(m2).

They published this hash and claimed that they could predict the future!
See www.win.tue.nl/hashclash/Nostradamus
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Security of SHA-1 and the SHA-2 functions

I SHA-1
• 2004-2007: theoretical collision attacks in effort ≈ 261

• ongoing effort likely to give collisions within 12 months
• broken but not as bad as MD5

I SHA-2 series: still a solid safety margin despite public scrutiny
I But Merkle-Damgård is not sound as a mode!
I Theoretical problems of Merkle-Damgård:
• 2nd preimages with effort below 2n attempts
• failure to meet Random Oracle security level for other properties

I Real problem of Merkle-Damgård: length extension weakness
• adversary knowing h(m) but not m can compute h(m| pad |m′)

for any m′ of his choice
• naive MAC function built from hash function mac = h(Kmac|m)

I secure if h would be a random oracle
I trivial forgery if h uses Merkle-Damgård
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The HMAC authentication mode [FIPS 197]

HMAC is a patch to compensate for the length-extension property: call
the hash function twice per mac
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The mode MGF1 [PKCS #1] and stream encryption

I In many applications we need a long hash output
• when used for deriving multiple keys (SSL, TLS, see later)
• when using for keystream generation, . . .

I Mode: Mask Generating Function 1 (MGF1)
• Compute h1 = h(M|1), h2 = h(M|2), h3 = h(M|3), . . .
• h = h1|h2|h3| . . .

I Stream cipher by taking M = K |nonce
• Zi = h(K |nonce|i)
• this is similar to counter mode
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SHA-3: the competition

I 2005-2006: MD5 and SHA-1 crisis
I 2008: NIST kicks off the open SHA-3 competition
I Requirements
• more efficient than SHA-2
• output lengths: 224, 256, 384, 512 bits
• security: collision and (2nd) pre-image resistant
• specs, code, design rationale and preliminary analysis
• patent waiver

I Three-round public process
• round 1: 64 submissions, 51 accepted
• round 2: 14 semi-finalists
• round 3: 5 finalists

I October 2012: NIST announces Keccak as SHA-3 winner
Designed by [Bertoni, Daemen, Peeters, Van Assche, 2007]

I August 2015: NIST finally publishes the SHA-3 standard: FIPS 202
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Keccak: permutation-based hashing

I Basic goals:
• mode iterating a fixed-length primitive
• security proof to exclude weaknesses such as length extension
• simplest possible primitive
• built-in support for long outputs

I Approach: tabula rasa
• permutation instead of block-cipher-based compression function
• bitwise logical operations (XOR, AND, NOT) instead of ARX

I Resulting mode: the sponge construction
[Bertoni, Daemen, Peeters, Van Assche (Keccak team) 2007]
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The sponge construction

M pad trunc Z

outer
inner

0

0

r

c

f f f f f f

absorbing squeezing

I Builds a hash function from a b-bit permutation f , with b = r + c
• r bits of rate
• c bits of capacity (security parameter: secure up to 2c/2)

I Arbitrary-length output: eXtendable Output Function (XOF)
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Underlying primitive f : cryptographic permutation

I Similar to a block cipher but without key input
• block cipher with fixed key
• every output bit depends on all input bits in a complicated way

I Keccak is a sponge function with permutations Keccak-f
• 7 permutations with width 25, 50, 100, 200, 400, 800 and 1600
• very different from MD5, SHA-1 and SHA-2
• very different from AES and DES
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Keccak(r , c)

I Sponge function using the permutation Keccak-f
• 7 permutations: b ∈ {25, 50, 100, 200, 400, 800, 1600}
• Only restriction r + c = b for one of these values

. . . from toy over lightweight to high-speed . . .
I SHA-3 instance SHAKE128: r = 1344 and c = 256
• permutation width: 1600
• security strength 128

I Lightweight instance: r = 40 and c = 160
• permutation width: 200
• security strength 80: what SHA-1 should have offered

I Security status 2016: huge safety margin
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The XOFs and hash functions in FIPS 202

I Four drop-in replacements with same output lengths of SHA-2
I Two extendable output functions (XOF)
I All use the 1600-bit version of Keccak-f
Following is for information only

XOF SHA-2 drop-in replacements
Keccak[c = 256](M|11|11)

first 224 bits of Keccak[c = 448](M|01)
Keccak[c = 512](M|11|11)

first 256 bits of Keccak[c = 512](M|01)
first 384 bits of Keccak[c = 768](M|01)
first 512 bits of Keccak[c = 1024](M|01)

SHAKE128 and SHAKE256 SHA3-224 to SHA3-512
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Mode for MAC (and key derivation)

0 f f

Key

…

Padded message

f ff

MAC

I No more need for HMAC
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Stream cipher mode

0 f f

Key IV

f

Key stream

I many output blocks per IV: similar to OFB
I 1 block per IV: similar to counter mode
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Conclusions

I you can do a lot with hash functions
• compression, encryption, MAC, key derivation . . .

I A good hash function behaves like a random oracle
• for an n-bit output:

I Generating (2nd) pre-image takes 2n hash attempts
I Generating collision takes 2n/2 hash attempts

• multiple independent hash functions from a single one by domain
separation

I Standard hash functions
• MD5 and NIST standard SHA-1: broken
• SHA-2: same philosophy, still very solid
• SHA-3: new generation

I SHAKE128 and SHAKE256: variable output length
I simplification of modes of use
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