
Computer Security: Public
Key Crypto
B. Jacobs and J. Daemen
Institute for Computing and Information Sciences � Digital Security
Radboud University Nijmegen
Version: fall 2016

Page 1 of 140 Jacobs and Daemen Version: fall 2016 Computer Security

Outline

Problems in key management

Public key crypto

Math basics for public-key cryptography

The RSA cryptosystem

Rolling out public key cryptography
Public key authentication
On electronic signatures

Discrete-log based cryptography
Di�e-Hellman key exchange
El Gamal encryption and signature
Elliptic curves

Public key protocols
Blind signatures

Public Key Crypto in Java

Page 2 of 140 Jacobs and Daemen Version: fall 2016 Computer Security

The blessings of crypto

Using crypto . . .
I Alice can protect her private data
I Alice and Bob can set up a secure channel
• ensure con�dentiality of content
• ensure authenticity of messages
• with respect to any adversary Eve
• over any communication medium

I GlobalCorp. Inc. can protect its business
• secure �nancial transactions
• hide customer database from competitors
• patch its products in the �eld for security/functionality
• protect intellectual property in software, media, etc.
• enforce its monopoly on games/accessories/etc.

Page 4 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Problems in key management

The curse of crypto

I Alice and Bob need to share a cryptographic key
I GlobalCorp. Inc. needs to roll out cryptographic keys
I . . . in a way such that Eve cannot get her hands on them
I The security is only as good as the secrecy of these keys

Important lesson:
I Cryptography does not solve problems, but only reduces them to . . .
• securely generating cryptographic keys
• securely establishing cryptographic keys
• keeping the keys out of Eve's hands

Page 5 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Problems in key management

Key establishment

How do Alice and Bob establish a shared secret?
I When they physically meet:
• exchange on a piece of paper or business card (unique pairs)
• on a USB stick: requires trust in stick and PC/smartphone
• but all cryptography requires trust in devices!

I When they don't meet it is harder. Two cases:
• there is a common and trusted friend
• no such friend

I For GlobalCorp. Inc. key management is much harder
• Eve is ubiquitous
• keys must be protected in the �eld

Page 6 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Problems in key management

Remote key establishment with trusted third party

Alice and Bob have a common friend Wally they trust
I Both share a key with Wally
I Alice generates a key K and sends it encrypted to Wally
I Wally decrypts Alice's key, encrypts and sends it to Bob
I Bob decrypts the cryptogram and now has K
I Alice and Bob both rely on Wally's honesty
• Did Wally send K to Bob and not to Eve?
• Wally now has K and can eavesdrop on intercepted messages

I Problem is now: getting Wally out of the equation

Page 7 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Problems in key management

Remote key establishment with trusted third
parties

Alice and Bob have a number of common friends they trust
I For each friend
• Alice randomly generates a secret key Ki

• Alice sends it to Bob via the common friend
I Alice and Bob take sum of all Ki as shared key K
I Remaining risks: conspiracy
• if friends collaborate, they can still cheat

I Remaining risks: denial-of-service
• a misbehaving friend can disturb the process and prevent key

setup
• identifying saboteur is not easy

Page 8 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Problems in key management

Remote key establishment w/o trusted third party

I Tamper-evident physically unclonable envelopes
• tamper-evident: you cannot open it without leaving traces
• unclonable: cannot fabricate one looking the same

I Sending by secure envelope:
• Alice sticks a 5 Euro banknote on the envelope with superglue
• Alice writes down the serial number of the banknote
• Alice sends a key K to Bob in the envelope
• upon receipt Bob checks that the envelope has not been opened
• Bob calls Alice and they check the banknote's serial number
• Bob gets the key K from the envelope

I Expensive and time-consuming

Page 9 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Problems in key management

Challenges in keys management for GlobalCorp.
Inc.

I Bank: getting keys in all banking cards
I Microsoft: getting software veri�cation key in all PCs
I Spotify or NetFlix: getting keys in user PC/laptop/smartphones
I Government: getting keys in ID cards and travel passports
I More complex eco-systems
• WWW: establishing keys between User PCs and internet sites
• Public sector: keys for OV-Chipkaart
• Mobile phone: imagine roaming

I etc.

Public Key cryptography to the rescue!

Page 10 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Problems in key management

Public key crypto wish list

Lamport hash chains (see exercises, assignment 7): authentication
without shared secret!

It would be nice to:
I Authenticate an entity without sharing a key with that entity
I Authenticate documents without writer's secret key:
• Electronic Signatures!

I Set up a key remotely without the need for secret channel

Public key cryptography can do all that!

. . . and much more

Page 12 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Public key crypto

Public key functionality

Public key crypto involves a counter-intuitive idea: use one key pair per
user, consisting of
I private key PrK : never to be revealed to the outside world
I public key PK : to be published and distributed freely
There are di�erent types of public-key cryptosystems. Most used:
I Signature schemes
• Alice uses PrKA for signing message: m, [m]PrKA

• anyone can use PKA for verifying Alice's signatures
I Encryption schemes
• anyone can use PKA to encipher a message meant for Alice
• Alice can decipher cryptogram with PrKA

I Key establishment
• Bob uses PrKB and PKA to compute secret KAB

• Alice uses PrKA and PKB to compute secret KAB

Page 13 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Public key crypto

Public key encryption as a form of translation

I Translation dictionaries
• Private key PrK : Dictionary Ourgeze → Dutch
• Public key PK : Dictionary Dutch → Ourgeze

I Say Alice keeps the last copy of the Ourgeze → Dutch Dictionary
• Encryption: translate to Ourgeze using PK
• Decryption: translate from Ourgeze using PrK

I Private key can be reconstructed from public key!
• Not secure?
• In pre-computer time this was a huge task!

I Same for actual public key cryptography
• private key PrK can be computed from public key PK
• just hope it's di�cult: many tried but none succeeded (so far)
• this is the basis of quasi all cryptographic security!

Page 14 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Public key crypto

Public key encryption as self-locking boxes

Page 15 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Public key crypto

Public key crypto: some history

I The idea of public key crypto and �rst key-establishment scheme
• Ralph Merkle, With�eld Di�e, Martin Hellman in 1976
• supposedly already invented at GCHQ in 1969

I The �rst public key signature and encryption scheme
• published by Rivest, Shamir and Adleman (RSA) in 1978
• supposedly already invented at GCHQ in 1970

I Elliptic Curve Cryptography
• published independently by Koblitz and Miller in 1985
• GCHQ must have overlooked this
• the dominant public key cryptosystem today

I Nowadays literally thousands of public key systems
I Current research focuses on: post-quantum crypto
• quantum computers would break all of the above
• NSA/GCHQ, Google, etc. could possibly build one
• public-key crypto that resists quantum attacks

Page 16 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Public key crypto

Some notation that is used but not explained

I Z: the set of integers: {. . .− 3,−2,−1, 0, 1, 2, 3, . . .}
I a ∈ A: this means that a is an element of a set A. For example,

2 ∈ Z means 2 is an element of the set of integers, or equivalently, 2
is an integer

I ∀: for all. E.g., ∀a ∈ Z : a+ 1 ∈ Z means: for every element of the
set of integers, that element plus one is also an integer

I ∃: exists. E.g., ∀a ∈ Z,∃b ∈ Z : a+ b = 0 means: for every integer
there exists an integer that added to that integer gives 0

I |n|: the length of the integer n in bits

Page 18 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Math basics for public-key cryptography

Prime numbers and factorization

I A number is prime if it is divisible only by 1 and by itself.

Prime numbers are: 2, 3, 5, 7, 11, 13, (in�nitely many)
I Each number can be written in a unique way as product of primes

(possibly multiple times), as in:

30 = 2 · 3 · 5 100 = 22 · 52 12345 = 3 · 5 · 823

I Finding such a prime number factorisation is a computationally hard
problem

I In particular, given two very large primes p, q, you can publish
n = p · q and no-one will (easily) �nd out what p, q are.

I Easy for 55 = 5 · 11 but already hard for 1763 = 41 · 43
I In 2009 factoring a 232-digit (768 bit) number n = p · q with

hundreds of machines took about 2 years

Page 19 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Math basics for public-key cryptography

Modular (clock) arithmetic

I On a 12-hour clock, the time `1 o'clock' is the same as the time `13
o'clock'; one writes

1 ≡ 13 (mod 12) ie �1 and 13 are the same modulo 12�

I Similarly for 24-hour clocks:

5 ≡ 29 (mod 24) since 5+ 24 = 29
5 ≡ 53 (mod 24) since 5+ (2 · 24) = 53
19 ≡ −5 (mod 24) since 19+ (−1 · 24) = −5

I In general, for N > 0 and n,m ∈ Z,

n ≡ m (modN) ⇐⇒ there is a k ∈ Z with n = m + k · N

In words, the di�erence of n,m is a multiple of N.

Page 20 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Math basics for public-key cryptography

Numbers modulo N

How many numbers are there modulo N?

One writes ZN for the set of numbers modulo N. Thus:

ZN =
{
0, 1, 2, · · · N − 1

}
For every m ∈ Z we have mmodN ∈ ZN .

Some Remarks

I Sometimes Z/NZ is written for ZN

I Formally, the elements m of ZN are equivalence classes
{k | k ≡ m (modN)} of numbers modulo N

I These classes are also called residue classes or just residues
I In practice we treat them simply as numbers

Page 21 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Math basics for public-key cryptography

Residues form a �ring�

I Numbers can be added (subtracted) and multiplied modulo N: they
form a �ring�

I For instance, modulo N = 15

10+ 6 ≡ 1 6− 10 ≡ 11
3+ 2 ≡ 5 0− 14 ≡ 1
4 · 5 ≡ 5 10 · 10 ≡ 10

I Sometimes it happens that a product is 1
For instance (still modulo 15): 4 · 4 ≡ 1 and 7 · 13 ≡ 1

I In that case one can say:

1

4
≡ 4 and

1

7
≡ 13

Page 22 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Math basics for public-key cryptography

Multiplication tables

For small N it is easy to make multiplication tables for ZN .

For instance, for N = 5,

Z5 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

I Note: every non-zero number
n ∈ Z5 has a an inverse 1

n ∈ Z5

I This holds for every Zp with p
a prime number
(more below)

Page 23 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Math basics for public-key cryptography

Mod and div, and Java (and C too)

I For N > 0 and m ∈ Z we write mmodN ∈ ZN

• k = (mmodN) if 0 ≤ k < N with k = m + x · N for some x
• For instance 15mod 10 = 5 and −6mod 15 = 9

I % is Java's remainder operation. It behaves di�erently from mod, on
negative numbers.

7 % 4 = 3 7mod 4 = 3
−7 % 4 = −3 −7mod 4 = 1

This interpretation of % is chosen for implementation reasons.[
One also has 7 % −4 = 3 and −7 % −4 = −3, which are unde�ned for

mod
]

I We also use integer division div, in such a way that:

n = m · (n div m) + (nmodm)

E.g., 15 div 7 = 2 and 15mod 7 = 1, and 15 = 7 · 2+ 1.

Page 24 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Math basics for public-key cryptography

Groups: de�nition

I Couple (A, ?) of a set A and a binary operation ?
I The binary operation must satisfy following properties:

closed: ∀a, b ∈ A : a ? b ∈ A
associative: ∀a, b, c ∈ A : (a ? b) ? c = a ? (b ? c)
neutral element: ∃e ∈ A,∀a ∈ A : a ? e = e ? a = a
inverse element: ∀a ∈ A,∃a′ ∈ A : a ? a′ = a′ ? a = e
abelian (optional) ∀a, b ∈ A a ? b = b ? a

I Notational conventions
Additive: (A,+) e = 0 a′ = −a
Multiplicative: (A,×) e = 1 a′ = a−1 or 1/a

I Groups can be �nite or in�nite, depending on A

Terminology: Group order

Order of a �nite group (A, ?), denoted #A, is number of elements in A

Page 25 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Math basics for public-key cryptography

Examples of groups and non-groups [for info only]

I Groups
• (Z,+), (Q,+), (R,+), (Z,+)
• (Q \ {0},×), (R \ {0},×), (C \ {0},×)

I Non-groups
• (N,+): no neutral element, no inverses
• (Z \ {0},×): elements without inverse
• (Q,×): zero has no inverse

Page 26 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Math basics for public-key cryptography

(Zn,+): A simple example of a �nite group

I Zn: integers smaller than n including zero
I Operation: addition modulo n

(1) c ← a+ b
(2) if c ≥ n, c ← c − n

I Notation: a+ b mod n or just a+ b
I Order of the group #(Zn,+) is n
I One group (Zn,+) for each integer n

Page 27 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Math basics for public-key cryptography

Cyclic behaviour in �nite groups

I Consider a sequence:
• i = 1 : a
• i = 2 : a ? a
• i = 3 : a ? a ? a
• . . .
• i = n : [n]a (additive) or an (multiplicative)

I In a �nite group (A, ?):
• ∀a ∈ A this sequence is periodic
• period of this sequence: order of a, denoted #a

Terminology: Order of a group element

The order of a group element a, denoted #a, is the smallest integer n
such that an = 1 (multiplicative) or [n]a = 0 (additive).

Page 28 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Math basics for public-key cryptography

Cyclic groups and generators

I Consider the set [0]g , [1]g , [2]g , . . .
I This is a group, called a cyclic group, denoted: 〈g〉
• Neutral element [0]g
• Inverse of [i]g : [#g − i]g

I g is called generator
I Example of cyclic group (Zn,+)
• generator: g = 1
• [i]g = i

Page 29 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Math basics for public-key cryptography

Example on orders: (Z21,+)

I Order of Z21: 21
I Order of 0: 1
I Order of 1: 21
I Order of 2: 21
I Order of 3: 7
I . . .
Shortcut: �nd the smallest i such that i · x is a multiple of n

Fact: order of an element in (Zn,+)

#x = n/gcd(n, x) with
gcd(n, x): the greatest common divisor of x and n

Page 30 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Math basics for public-key cryptography

Greatest common divisor

I De�nition:
gcd(n,m) = greatest integer k that divides both n and m

= greatest k with n = k · n′ and m = k ·m′,
for some n′,m′

I Examples:
gcd(20, 15) = 5 gcd(78, 12) = 6 gcd(15, 8) = 1

I Properties:
• gcd(n,m) = gcd(m, n)
• gcd(n,m) = gcd(n,−m)
• gcd(n, 0) = n

Terminology: relative prime (or coprime)

If gcd(n,m) = 1, one calls n,m relative prime or coprime

Page 31 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Math basics for public-key cryptography

Euclidean Algorithm

Property (assume n > m > 0):
I gcd(n,m) = gcd(m, n mod m)
This can be applied iteratively until one of arguments is 0
Example:

gcd(171, 111) = gcd(111, 171 mod 111) = gcd(111, 60)
= gcd(60, 111 mod 60) = gcd(60, 51)
= gcd(51, 60 mod 51) = gcd(51, 9)
= gcd(9, 51 mod 9) = gcd(9, 6)
= gcd(6, 9 mod 6) = gcd(6, 3)
= gcd(3, 6 mod 3) = gcd(3, 0) = 3

Variant allowing negative numbers :
gcd(171, 111) = gcd(111, 171 mod 111) = gcd(111,−51)

= gcd(51, 111 mod 51) = gcd(51, 9)
= gcd(9, 51 mod 9) = gcd(9,−3)
= gcd(3, 9 mod 3) = gcd(3, 0) = 3

Page 32 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Math basics for public-key cryptography

Subgroups

I (B, ?) is a subgroup of (A, ?) if
• B is a subset of A
• e ∈ B
• ∀a, b ∈ B : a ? b ∈ B
• ∀a ∈ B : the inverse of a is in B

Lagrange's Theorem

If (B, ?) is a subgroup of (A, ?): #B divides #A

I Case of cyclic subgroup: ∀a ∈ A :< a > is a subgroup of (A, ?)

Corollary (for order of elements)

For any element a ∈ A: #a divides #A

Page 33 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Math basics for public-key cryptography

(Zn,×): A group?

I ×: Multiplication modulo n
I are group conditions satis�ed?
• closed: yes!
• associative: yes!
• neutral element: 1
• inverse element: no, 0 has no inverse

I Let us exclude 0: so (Zn \ {0},×)
I Check properties again with multiplication table
I Examples:

(1) (Z5 \ {0},×): OK!
(2) (Z21 \ {0},×): NOK!

Page 34 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Math basics for public-key cryptography

(Z∗
p,×) with prime p: a cyclic group!

I Z∗p denotes Zp with 0 removed
I Order of the group is p − 1
I Group turns out to be cyclic
I Inverse of an element x :
• Order of an element divides order of the group p − 1
• xp−1 = 1
• So x−1 = x (p−1)−1 = xp−2

• Problem: this costs p − 3 multiplications (at �rst sight . . .)

Multiplicative prime groups

(Z∗p,×) is a cyclic group of order p − 1

Page 35 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Math basics for public-key cryptography

(Z∗
p,×) with prime p

Multiplicative prime groups

(Z∗p,×) is a cyclic group of order p − 1

Alternative way of seeing it:
I Find a generator g ∈ (Z∗p,×)
I Write elements as powers of the generator: g i

I Multiplication: �nd c such that g c = g a × gb

I Clearly: g a × gb = g a+b = g a+b mod p−1

I So c = a+ b mod p − 1
(Z∗p,×) is just (Zp−1,+) in disguise!

Example: (Z∗23,×) and (Z22,+) are similar

Page 36 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Math basics for public-key cryptography

Back to (Zn,×) with n no prime

I We remove 0: Z∗n
I Inspection of multiplication table reveals some a× b = 0
• this implies a · b = k · n for some k
• a cannot be a multiple of n as a < n
• b cannot be a multiple of n as b < n
• from factorization of both sides, a must be multiple of factor of n
• same for b
• so a is not coprime to n and b is not coprime to n

I We now re-de�ne Z∗n:
• all integers < n coprime to n, so with gcd(x , n) = 1
• closed: if gcd(a, n) = 1 and gcd(b, n) = 1, then gcd(ab, n) = 1
• does every element have an inverse?

Page 37 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Math basics for public-key cryptography

Extended Euclidean Algorithm

The extended Euclidean algorithm returns a pair x , y ∈ Z with
n · x +m · y = gcd(n,m)
Our earlier example:

−51 = 171− 2 · 111
9 = 111+ 2 · (−51)
3 = (−51) + 6 · 9
0 = (−9) + 3 · 3

And now backward substitution:

3 = (−51) + 6 · 9
3 = (−51) + 6 · (111+ 2 · (−51))
3 = (−51) + 6 · 111+ 12 · (−51)
3 = 6 · 111+ 13 · (−51)
3 = 6 · 111+ 13 · (171− 2 · 111)
3 = 6 · 111+ 13 · 171− 26 · 111
3 = 13 · 171− 20 · 111

Page 38 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Math basics for public-key cryptography

Relative primes lemma

Relative primes Lemma [Important]

m has multiplicative inverse modulo N (i.e., in ZN) i� gcd(m,N) = 1

Proof (⇒) Extended gcd yields x , y with m · x + N · y = gcd(m,N) = 1.
Taking both sides modulo N gives m · x mod N = 1, or x = m−1

(⇐) We have m · x ≡ 1modN so there is an integer y such that
m · x = 1+ N · y or equivalently m · x − N · y = 1. Now gcd(m,N)
divides both m and N, so it divides m · x − N · y = 1. But if gcd(m,N)
divides 1, it must be 1 itself. �

Note: Multiplicative inverse can be computed with extended Euclidean
algorithm (with version more optimized than our example)

Corollary

For p a prime, every non-zero n ∈ Zp has an inverse (Zp is a �eld)

Page 39 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Math basics for public-key cryptography

What is the order of (Z∗
n,×)?

We now know (Z∗n,×) is a group but don't know its order

De�nition: Euler's totient function

Euler's totient function of an integer n, denoted φ(n), is the number of
integers smaller than and coprime to n.

I Clearly #(Z∗n,×) = φ(n)
I For prime p, all integers 1 to p − 1 are coprime to p: φ(p) = p − 1
I If n = a · b with a and b coprime: φ(a · b) = φ(a)φ(b)
I For the power of a prime pn: φ(pn) = (p − 1)pn−1

I Computing φ(n):
• factor n into primes and their powers
• apply φ(pn) = (p − 1)pn−1 to each of the factors

I Computing φ(n) is as hard as factoring n
I As xφ(n) mod n = 1, we can compute x−1 = xφ(n)−1 mod n

Page 40 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Math basics for public-key cryptography

Number-theoretic theorems [Background info]

Euler's theorem (Lagrange's theorem applied to (Z∗
N ,×))

If gcd(m,N) = 1, then mφ(N) ≡ 1modN

PROOF Write Z∗
N = {x1, x2, . . . , xφ(N)} and form the product:

x = x1 · x2 · · · xφ(N) ∈ Z∗
N . Form also y = (m · x1) · · · (m · xφ(N)) ∈ Z∗

N . Thus

y ≡ mφ(N) · x . Since m is invertible the factors m · xi are all di�erent and equal

to a unique yj ; thus x = y . Hence mφ(N) ≡ 1. �

Fermat's little theorem

If p is prime and m is not a multiple of p then mp−1 ≡ 1mod p

PROOF Take N = p in Euler's theorem and use that φ(p) = p − 1. �

Used as primality test for p: try out if mp−1 ≡ 1 for many m.

Page 41 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Math basics for public-key cryptography

Exponentiation by Square-and-Multiply

I Computing ae mod n in naive way takes e − 1 modular
multiplications

I Infeasible if a, e and n are hundreds of decimals
I More e�cient method: square-and-multiply
I Example: computing g12 with left-to-right square-and-multiply
• g2 = g × g
• g4 = g2 × g2

• g8 = g4 × g4

• g12 = g8 × g4

I Only 3 squarings and 1 multiplication
I Instead of 11 in naive method

Page 42 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Math basics for public-key cryptography

Exponentiation by Square-and-Multiply (cont'd)

I Computing g12 with right-to-left square-and-multiply
• g2 = g × g
• g3 = g2 × g
• g6 = g3 × g3

• g12 = g6 × g6

I Many variants exist, typical computation cost for ae mod N:
• |e| squarings, with |e| the bitlength e
• 1 to |e| multiplications, depending on e and method

I Relatively cheap
• This is why RSA, DH and elliptic curve crypto actually work
• Computing x−1 mod n by xφ(n)−1 mod n much cheaper than by

extended Euclidean algorithm

Page 43 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Math basics for public-key cryptography

Ron Rivest, Adi Shamir, Leonard Adleman

Designed their famous cryptosystem in 1977-1978

Page 45 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
The RSA cryptosystem

What is the RSA cryptosystem?

RSA is a trapdoor one-way function y = f (x)
I given x , computing y = f (x) is easy
I given y , �nding x is di�cult
I given y and trapdoor info: computing x = f −1(y) is easy

The RSA public key function:

y = xe mod n with x , y ∈ Zn

Features
I (n, e) is the public key, speci�c for a particular user
I Modulus n = p · q with p and q large primes
I Exponent e, usually a small prime, e.g., 216 + 1
I Trapdoor: knowledge of p and q

Page 46 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
The RSA cryptosystem

The RSA private key

The order of the group (Z∗n ,×) is φ(n) so ∀x ∈ Z∗n :

xφ(n) mod n = x (p−1)(q−1) = 1

Let d satisfy
e · d + k · (p − 1)(q − 1) = 1

then (omitting modn)

(xe)d = xe·d = x1−k·φ(n) = x · x−kφ(n) = x · (xφ(n))−k = x

(Conclusion actually holds for all x ∈ Zn)
So the RSA private key operation

x = yd mod n with d = e−1 mod φ(n)

(for info, can be optimized using so-called Chinese Remainder Theorem)

Page 47 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
The RSA cryptosystem

RSA public key pair

I Public key: public exponent and modulus (e, n)
I Private key: private exponent and modulus (d , n)
I Modulus:
• n = p · q with p and q large primes

I Public exponent e
• often small prime, e.g., 216 + 1: makes computing xe light
• p − 1 and q − 1 shall be coprime to e

I Private exponent d
• exponent d is inverse of e modulo (p − 1)(q − 1)
• length of d is close to that of n: xd much slower than xe

I Security of RSA relies on di�culty of factoring n
• factoring n allows computing d from (e, n)
• p and q shall be large enough and unpredictable by attacker
• given n, knowledge of φ(n) allows factoring n and computing d

Page 48 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
The RSA cryptosystem

Factoring n, given φ(n)

Assume modulus n is known

Knowledge of φ(n) allows factoring n

We have two equations n = p · q and φ(n) = (p − 1)(q − 1) or

n = p · q and φ(n) = p · q − p − q + 1

Subtracting them: q = n − φ− 1− p and �lling in in �rst equation:

n = p · (n − φ(n)− 1− p)

Working out gives the following quadratic equation in p:

p2 + (φ(n)− n − 1) · p + n = 0

Can be solved in usual way. E.g., n = 91 gives q2− 20q+ 91 = 0, and so:

q = 20±
√
400−4·91
2

= 20±6
2

= 13, 7

Page 49 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
The RSA cryptosystem

Di�culty of factoring

I State of the art of factoring: two important aspects
• reduction of computing cost: Moore's Law
• improvements in factoring algorithms

I Factoring algorithms
• Sophisticated algorithms involving many subtleties
• Typically two phases:

I distributed phase: equation harvesting
I centralized phase: equation solving

• Best known: general number �eld sieve (GNFS)
I These advances lead to increase of advised RSA modulus lengths

see http://www.keylength.com/

Page 50 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
The RSA cryptosystem

Factoring records

Page 51 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
The RSA cryptosystem

Using RSA for encryption

The naive way:
I Bob sends message to Alice enciphered with Alice's public key
• Bob codes his message as an integer m ∈ Z
• e.g., standardized in PKCS#1 StringToInteger

• Bob computes c = me mod n with (e, n) the public key of Alice
I Alice deciphers received cryptogram
• Alice computes m = cd mod n with (d , n) her private key
• Alice decodes m as a message
• using PKCS#1 IntegerToString

PKCS: series of industry standard from RSA Laboratories.

Page 52 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
The RSA cryptosystem

Using RSA for encryption: attention points

I m shall have enough entropy:
• Eve can guess m and check if c = me mod n
• e.g., EMV payment cards use RSA for encrypting PIN to card
• method: add random string r : m = StringToInteger(PIN, r)
• in symmetric encryption plaintext uniqueness (nonce) was

su�cient
I Algebraic properties of RSA: (malleability)
• e.g., given two cryptograms c1 = me

1 and c2 = me
2, Eve can

construct a cryptogram for m3 = m1 ·m2 mod n as
c3 = c1 · c2 mod n, without knowing m1 or m2 as
c1 · c2 = me

1 ·me
2 = (m1 ·m2)

e

I Length of message is limited and de�ning modes is hard
I RSA decryption is relatively slow
Current advice by experts: don't encipher data with RSA

Page 53 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
The RSA cryptosystem

Using RSA for encryption: solutions

I Apply a hybrid scheme:
• use RSA for establishing a symmetric key
• encipher and authenticate with symmetric cryptography

I Sending an encrypted key
• addition of redundancy before encryption
• veri�cation of redundancy after decryption
• if NOK, return error

I Many proposals:
• best known standard: PKCS #1 v1.5 and v2 (e.g. OAEP)
• rather complex and not clear if objectives are achieved

I despite the problems, this is still the most widespread method

Page 54 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
The RSA cryptosystem

Example: PKCS#1 v1.5 padding for encryption

INPUT: Recipient's RSA public key, (n, e) of length k = |n|/8 bytes;
payload D (e.g., a symmetric key) |D| ≤ 8(k − 11).
OUTPUT: Encrypted block of length k bytes

(1) Form the k-byte encoded block, EB

EB = 00 ‖ 02 ‖ PS ‖ 00 ‖ D

where PS is a random string k − |D| − 3 non-zero bytes
(ie. at least eight random bytes)

(2) Convert byte string EB to integer m = StringToInteger(EB, k).

(3) Encrypt with RSA: c = me mod n

(4) Convert c to k-byte output block OB = IntegerToString(c , k)

(5) Output OB.

Page 55 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
The RSA cryptosystem

PKCS#1 v1.5 encryption padding example

Assume a RSA public key (n, e) with n 1024 bit long.

As data D, take a (random) AES-128 key, such as:

D = 4E636AF98E40F3ADCFCCB698F4E80B9F

Message block EB with random padding bytes shown in green:

EB = 0002257F48FD1F1793B7E5E02306F2D3

228F5C95ADF5F31566729F132AA12009

E3FC9B2B475CD6944EF191E3F59545E6

71E474B555799FE3756099F044964038

B16B2148E9A2F9C6F44BB5C52E3C6C80

61CF694145FAFDB24402AD1819EACEDF

4A36C6E4D2CD8FC1D62E5A1268F49600

4E636AF98E40F3ADCFCCB698F4E80B9F

The random padding makes me mod n di�erent each time

Page 56 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
The RSA cryptosystem

Using RSA for encryption: the solution

RSA Key Establishment Method (KEM)
I Bob randomly generates r ∈ Zn

I Bob sends c = r e mod n to Alice
I Alice deciphers c back to r
I both compute shared secret as hash(r)

RSA-KEM is THE sound way to use RSA for establishing a key

Page 57 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
The RSA cryptosystem

Using RSA for signatures

The naive way:
I Alice signs message with her private key
• Alice codes her message as an integer m in Zn

• Alice computes s = md mod n with (d , n) her private key
I Bob veri�es the signed message (m, s)
• Bob computes m′ = se mod n with (e, n) the public key of Alice
• He checks that m′ = m

Page 58 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
The RSA cryptosystem

Using RSA for signatures: attention points

I Limitation on message length (and secure modes are hard to de�ne)
• instead of m, we input StringToInteger(h(m))
• additional bene�t: becomes much faster

I RSA malleability
• given two signatures s1 = md

1 and s2 = md
2 , Eve can construct a

signature for m3 = m1 ·m2 mod n by computing
s3 = s1 · s2 mod n.

• generation of signature of message without knowing private key
I solution: speci�c padding schemes, e.g. PKCS # 1 v1.5 or v2 (PSS)
• adds redundancy by padding
• applies hashing for destroying algebraic structure
• e.g., s1 · s2 no longer veri�es as a valid signature

Page 59 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
The RSA cryptosystem

RSA Probabilistic Signature Scheme (PSS)

(MGF = XOF)

Page 60 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
The RSA cryptosystem

RSA e�ciency

I Private exponentiation:
• Square and multiply
• grows with the third power of the modulus length
• e.g., modulus length ×2: computation time goes ×8

I Public exponentiation:
• more e�cient thanks to short public exponent

I Key generation:
• randomly generating large primes p and q
• About 15 to 40 times the e�ort of a private exponentiation

Page 61 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
The RSA cryptosystem

RSA key pair generation

A user generating an RSA key pair with given modulus length |n|:
I chooses the public exponent e
• Often a small prime imposed by the context
• Sometimes randomly generated per user, e.g. 256 bits

I randomly generates prime p of given length ` = |n|/2
• p − 1 shall be coprime to e

I randomly generates prime q such that p · q has length |n|
• q − 1 shall be coprime to e

I computes modulus n = p · q
I computes private exponent d as e−1 modulo (p − 1)(q − 1)
I Attention points [for info only]:
• RSA works with p, q of any length but often software requires

that |n| is a multiple of 8 (or 32) and |p| = |q| = |n|/2
• There are multiple valid values of d < (p − 1)(q − 1) but just

one < lcm(p − 1)(q − 1) = (p − 1)(q − 1)/gcd(p − 1, q − 1)

Page 62 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
The RSA cryptosystem

Generation of random primes

Randomly generating a prime of given given length `:
I generate string of `− 2 random bits
I put a 1 before and after
I interpret the result as an integer x : odd integer length `
I repeat following loop:
• if gcd(x − 1, e) 6= 1, go to last step of the loop
• randomly choose b and do Fermat test: bx−1 mod x = 1?
• if it fails the test, go to last step of the loop
• do w more Fermat tests for randomly chosen b
• if it passes all tests, return p = x
• add 2 to x and try again

(Just an example, several other approaches)

Suggestion: program this in Python!

Page 63 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
The RSA cryptosystem

Generation of random primes: attention points

I Execution time: long and variable
• takes several exponentiations
• trial and error: sometimes lucky, sometimes not

I Optimization
• trial division by small primes: 3, 5, 7, 11, · · ·
• �xing the base b to small numbers: 2, 3, . . .
• variant of Fermat test: Rabin-Miller, slightly more e�cient

I Security
• result can still be non-prime but probability decreases with

number of Fermat tests w
• unpredictability of random generator is crucial!

I Special features
• range of result is [2` + 1, 2`+1 − 1]
• for di�erent range: �x most signi�cant bits

Page 64 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
The RSA cryptosystem

RSA toy example, calculated by hand

I Choose e = 3
I Take p = 5, q = 11, so that n = p · q = 55 and φ(n) = 40
• OK: both p − 1 and q − 1 are coprime to e

I Compute d = 1
e = 1

3
∈ Z∗40 with extended Euclidean algorithm:

• it yields x , y ∈ Z with 40x + 3y = 1, so that d = 1
3
= y

• By hand: 3−1 mod 40 = −13 = 27
(indeed with 40 · 1+ 3 · −13 = 40− 39 = 1)

I Let message m = 19 ∈ Zn

• encipher c = me mod n = 193 mod 55 = 39
• decipher m′ = cd mod n = 3927 mod 55 = 19

Page 65 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
The RSA cryptosystem

The Achilles' Heel of (public key) cryptography

Cryptography does not solve problems, but only reduces them
I In public key cryptography, problems are reduced to:

Authentication of public keys

I How do we know whether PKA actually belongs to Alice, when
• we verify a signature with PKAlice?
• we establish a shared secret using PKAlice?
• we authenticate someone using PKAlice?

I PKAlice could actually be the public key of Trudy
I Need: authenticate link between public key and its owner
I In many practical systems this issue is not well addressed
• one of main reasons for the miserable level of security in IT
• same mistakes made again and again (see next slides)
• problem of human behaviour rather than technology

Page 67 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography Public key authentication

Methods of public key authentication

Say, Bob wants to use Alice's public key
I He can obtain it via email, Alice's homepage, business card, . . .

There are essentially three methods:
I Manual: Bob relies on Alice alone
I Web of trust: Bob relies on their mutual friends
I Certi�cate Authority (CA): Bob relies on a central authority
. . . and: Trust on First Use (TOFU): Bob knocks on wood

Systems for public key authentication (and revocation) are called Public
Key Infrastructures (PKI). Most of the time, the term PKI is used as a
synonym of the CA method.

Page 68 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography Public key authentication

Manual public key validation

I Bob checks with Alice if his copy of PKA matches that of Alice
• e.g., face-to-face, via phone or video-call
• email will NOT do
• requires that Bob veri�es he is actually talking to Alice

I Often one uses a hash
• verifying h(PKB , IdB) instead of key PKB directly
• hash function shall be 2nd preimage resistant
• reader-friendly coding of the hash: �ngerprint

I Most reliable method
• very rarely used
• main problem: requires users to be security-aware

I a public key crypto pioneer: Phil Zimmerman
• 1991: creates PGP secure email, supporting key validation
• now: at Silent Circle (e.g. blackphone), settling with TOFU
• you cannot be idealistic all your life

Page 69 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography Public key authentication

Web-of-trust public key authentication

Crowd style (�trust what your friends say�, bottom-up)
I Say Alice and Bob have a common friend: Wally
• Bob already has an authentic copy of PKW : Wally's public key
• Wally already veri�ed that his copy of PKA is authentic
• Bob asks Wally to sign 〈Alice,PKA〉 with his private key PrKW

• Bob can now verify this signature (certi�cate) using PKW

I For more assurance, Bob can ask multiple friends to sign 〈Alice,PKA〉
I Di�erence with symmetric-key case
• symmetric: Wally has shared key and can cheat undetectedly
• here Wally can sign 〈Alice,PKW ′〉 instead of 〈Alice,PKA〉
• . . . and can decipher Bob's messages and/or sign as Alice
• but: Bob and Alice can catch Wally by manual validation

I Feature introduced by Phil Zimmerman in PGP
• same problem: requires security-aware users
• PGP (and gpg) usage in practice nowadays: mostly TOFU

Page 70 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography Public key authentication

Web of trust: signing parties

I People meet to check each other's identity
I and exchange public key �ngerprints: (truncated) hashes of public

keys (BJ's is 0xA45AFFF8)
• beware of 2nd preimages!

I to later look up the keys corresponding to the �ngerprint and sign
them

(source: http://xkcd.com/364/)

Page 71 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography Public key authentication

http://xkcd.com/364/

Certi�cate Authority

Phone-book style (�trust what an authority says�, top-down)
I use a trusted list of pairs 〈name, PKname〉
I but who can be trusted to compile and maintain such a list?
I this is done by a Certi�cate Authority (CA)
• a super-Wally that signs public keys to be trusted by everyone

I Basic notion: public key certi�cate, i.e. signed statement:[
�Trustee declares that the public key of X is PKX ;

this statement dates from (start date) and is valid

until (end date), and is recorded with (serial nr.)�
]
PrKTrustee

I There are standardised formats for certi�cates, like X.509
I The term (public key) certi�cate is often abused

Page 72 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography Public key authentication

Public Key Infrastructure (PKI)

I Certi�cation Authority (CA)
• generates public key certi�cates
• publishes certi�cate revocation lists for compromised keys
• can be done in multiple levels: root CA and intermediate ones

I Registration Authority
• part of CA that veri�es the identity of the user
• expensive part: administrative and legal aspects

I Most CAs are commercial companies, like VeriSign, Thawte,
Comodo, or DigiNotar (now �dead�)

I O�er di�erent levels of certi�cates, depending on the thoroughness
of identity veri�cation in registration

Page 73 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography Public key authentication

Example veri�cation, by VeriSign

VeriSign o�ers three assurance levels for certi�cates

(1) Class 1 certi�cate: only email veri�cation for individuals:
�authentication procedures are based on assurances that the
Subscriber's distinguished name is unique within the domain of a
particular CA and that a certain e-mail address is associated with a
public key�

(2) Class 2 certi�cate: �veri�cation of information submitted by the
Certi�cate Applicant against identity proo�ng sources�

(3) Class 3 certi�cate: �assurances of the identity of the Subscriber
based on the personal (physical) presence of the Subscriber to
con�rm his or her identity using, at a minimum, a well-recognized
form of government-issued identi�cation and one other identi�cation
credential.�

Page 74 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography Public key authentication

Where do I �nd someone else's certi�cate?

I The most obvious way to obtain a certi�cate is: directly from the
owner

I From a certi�cate directory or key server, such as:
• pgp.mit.edu

(you can look up BJ's key there, and see who signed it)

• subkeys.pgp.net etc.

I The root public keys are pre-con�gured, typically in browsers.
• Often called �root certi�cates�, but they aren't
• E.g., in �refox look under Preferences - Advanced - View

Certi�cates
• On the web:

www.mozilla.org/projects/security/certs/included

Page 75 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography Public key authentication

pgp.mit.edu
subkeys.pgp.net
www.mozilla.org/projects/security/certs/included

Certi�cate (PKI) usage examples

I �Secure webaccess� via server-side certi�cates, recognisable via:

• Protocols: TLS and https
• Allows user to authenticate website content
• Protects con�dentiality of web tra�c between user and site
• Allows continued usage of passwords and card nr. based credit

car payments
I Code signing, for integrity and authenticity of downloaded code
I EMV payment with smart cards: VISA, Mastercard, Maestro
I Client-side certi�cates for secure remote logic (e.g., in VPN =

Virtual Private Network)
I National ID cards and travel passports
I Sensor-certi�cates in a sensor network, against spoo�ng sensors

and/or sensor data

Page 76 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography Public key authentication

Certi�cate Revocation, via CRLs

Revocation: declaring a public key certi�cate no longer valid

Possible reasons for revocation

I certi�cate owner lost control over the private key
I crypto has become weak (think of MD5 or SHA-1 hash)
I CA turns out to unreliable (think of DigiNotar)

Certi�cate Revocation Lists (CRLs)

I maintained by CAs, and updated regularly (e.g., 24 hours)
I should be consulted before every use of a certi�cate
I you can subscribe to revocation lists so that they are loaded

automatically into your browser

This is the theory, in practice there is little follow-up

Page 77 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography Public key authentication

Revocation, via OCSP

I In o�-line checking, CRLs require bandwidth and local storage
• over�owing the list is possible attack scenario

I Alternative: OCSP = Online Certi�cate Status Protocol

(1) Suppose Bob wants to check Alice's certi�cate before use
(2) Bob sends OCSP request to CA with certi�cate serial nr.
(3) CA looks up serial number in its (supposedly) secure database
(4) if not revoked, it replies with a signed, successful OCSP response

I Privacy issue: with OCSP you reveal to CA which certi�cates you
use, and thus who you communicate with
• also when you communicate with someone using OCSP

Note: you are basically online with the CA, so long-term certi�cates are
not really needed.

Page 78 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography Public key authentication

Certi�cate chains

Imagine you have certi�cates:

(1) [�A's public key is PKA . . . �]PrKB

(2) [�B's public key is PKB . . . �]PrKc

Suppose you have these 2 certi�cates, and C 's public key
I What can you deduce?
I Who do you (have to) trust?
I To do what?

Example: active authentication in e-passport

I private key securely embedded in passport chip
I public key signed by producer (Morpho in NL)
I Morpho's public key signed by Dutch state

Page 79 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography Public key authentication

The trouble with PKI

I All participants need authentic copies of root CA public keys
• a root CA cannot have a certi�cate, per de�nition
• often does have a meaningless self-signed certi�cate
• hardcoded in software or included in software releases
• you are trusting Microsoft, Mozilla, Google, Apple, KPN . . .

I Why most PKI's have failed up to now:
• CAs in theory: trustworthy service providers that accept liability
• CAs in practice: unreliable organizations only in it for the money

I Tension between (CA) PKI concept and the essence of public key
crypto:
• PK crypto: authentication and con�dentiality without need for

pre-shared keys or trusted third party
• CA is nothing more than a trusted third party

Page 80 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography Public key authentication

Problems in the TLS (https) PKI

I In your browser there are about 650 CA root keys
• Note: a common misnomer for CA root key is (CA) root

certi�cate
• whatever these CAs sign is shown as trusted by your browser

I This makes the PKI system fragile
• CAs can sign anything, not only for their customers
• e.g. rogue gmail certi�cates, signed by DigiNotar, appeared in

aug.'11, but Google was never a customer of DigiNotar

I Available controls are rather weak:
• rogue certi�cates can be revoked (blacklisted), after the fact
• browser producers can remove root certi�cates (of bad CAs)
• compulsory auditing of CAs
• via OCSP server logs certi�cate usage can be tracked

I root of the problem: lack of liability of software providers and CAs

Page 81 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography Public key authentication

CACert: attempt to merge web of trust with PKI

I cacert.org provides free certi�cates, via a web-of-trust
I certi�cate owners can accumulate points by being signed by assurers
I if you have ≥ 100 points, you can become assurer yourself

Weaknesses:
I CAcert is poorly run
I It never managed to set up an audit in order to get its root key into

major browsers

Cool idea at �rst sight, but useless
I Security-aware users don't trust some self-declared CA
I CA is useful if liable, but CACert accepts none whatsoever

Page 82 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography Public key authentication

cacert.org

Small key problem in the wild (aug.-nov. 2011)

I What happened?
• F-secure discovered a certi�cate over a key used to sign malware
• the malware targeted governments and defense industry
• certi�cate was provided by the CA DigiCert (Malaysia)
• result: Mozilla and Microsoft blocked this CA

I certi�ed public key was RSA key with modulus of 512 bits
• Fox-IT also found such malware (for �in�ltrating high-value

targets�) and claims that public keys have been brute-forced
• required time to factor 512-bit modulus: hours-weeks

(depending on hardware)
• malware signed with the resulting private key

I 512-bit RSA keys accepted by a CA and in browsers as late as 2011:
total incompetence

Page 83 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography Public key authentication

DigiNotar I: background

I The Dutch CA DigiNotar was founded in 1997, based on need for
certi�cates among notaries
• bought by US company VASCO in jan'11
• �voluntary� bankruptcy in sept.'11

I DigiNotar's computer systems were in�ltrated in mid july'11,
resulting in rogue certi�cates
• DotNetNuke CMS software was 30 updates (≥ 3 years) behind
• Dutch government only became aware on 2 sept.
• it operated in �crisis mode� for 10 days

I About 60.000 DigiNotar certi�cates used in NL
• many of them deeply embedded in infrastructure (for

inter-system communication)
• some of them need frequent re-issuance (short-life time)
• national stand-still was possible nightmare scenario

Page 84 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography Public key authentication

DigiNotar II: act of war against NL?

I Hack claimed by 21 year old Iranian �Comodohacker�
• he published proof (correct sysadmin password `Pr0d@dm1n')
• claimed to have access to more CAs (including GlobalSign)
• also political motivation (see pastebin.com/85WV10EL)

Dutch government is paying what they did 16 years ago about Sre-

brenica, you don't have any more e-Government huh? You turned to

age of papers and photocopy machines and hand signatures and seals?

Oh, sorry! But have you ever thought about Srebrenica? 8000 for 30?

Unforgivable... Never!

I Hacker could have put all 60K NL-certi�cates on the blacklist
• this would have crippled the country
• interesting question: would this be an act of war?
• di�cult but very hot legal topic: attribution is problematic
• traditionally, in an �act of war� it is clear who did it.

Page 85 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography Public key authentication

pastebin.com/85WV10EL

DigiNotar III: rogue certi�cate usage (via OCSP
calls)

Main target: 300K gmail users in Iran (via man-in-the-middle)

(More info: search for: Black Tulip Update, or for: onderzoeksraad

Diginotarincident)

Page 86 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography Public key authentication

DigiNotar IV: certi�cates at stake

I DigiNotar as CA had its own root key in all browsers
• it has been kicked out, in browser updates
• Microsoft postponed its patch for a week (for NL only)!
• the Dutch government requested this, in order to buy more time

for replacing certi�cates (from other CAs)

I DigiNotar was also sub-CA of the Dutch state
• private key of Staat der Nederlanden stored elsewhere
• big fear during the crisis: this root would also be lost
• it did not happen
• alternative sub-CA's: Getronics PinkRoccade (part of KPN),

QuoVadis, DigiDentity, ESG

Page 87 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography Public key authentication

DigiNotar V: Fox-IT �ndings

I DigiNotar hired security company Fox-IT (Delft)
• Fox-IT investigated the security breach
• published �ndings, in two successive reports (2011 & 2012)

I Actual problem: the serial number of a DigiNotar certi�cate found
in the wild was not found in DigiNotar's systems records

I The number of rogue certi�cates is unknown
• but OCSP logs report on actual use of such certi�cates

I Fox-IT reported �hacker activities with administrative rights�
• attacker left signature Janam Fadaye Rahbar
• same as used in earlier attacks on Comodo

I Embarrassing �ndings:
• all CA servers in one Windows domain (no compartimentalisation)
• no antivirus protection present; late/no updates
• some of the malware used could have been detected

Page 88 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography Public key authentication

DigiNotar VI: lessons if you still believe in CA's

I Know your own systems and your vulnerabilities!
I Use multiple certi�cates for crucial connections
I Strengthen audit requirements and process
• only management audit was required, no security audit
• the requirements are about 5 years old, not de�ned with �state

actor� as opponent
I Security companies are targets, to be used as stepping stones
• e.g., march'11 attack on authentication tokens of RSA company
• used later in attacks on US defence industry

I Alternative needed for PKI?
I Cyber security is now �rmly on the (political) agenda
• also because of �Lektober� and stream of (website) vulnerabilities
• now almost weekly topic in Parliament

(e.g., breach noti�cation and privacy-by-design)

Page 89 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography Public key authentication

DigiNotar VII: Finally (source: NRC 7/9/2011)

DigiNotar has not re-emerged: it had only one chance and blew it!

Page 90 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography Public key authentication

Trust on �rst use (TOFU)

Per default, no public key validation
I Bob trusts that received public key is Alice's without validation
I Man-in-the-middle risk: Eve can substitute public key by hers
I Used by the cool crowd:
• messaging service Signal
• messaging service Whatsapp
• secure mobile blackphone from Silent Circle
• . . .

I Sometimes presented as alternative to PKI
I How is it possible that people buy this nonsense?
• it promises security without the e�ort, a.o., key management
• similar to voting for populists and expecting improvement
• or eating chocolate to feel better

I It is not all bad: systems do support manual key validation

Page 91 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography Public key authentication

Example of TOFU: WhatsApp

I There is a white paper describing the security protocol
• not enough detail to know what they are doing exactly
• e.g. what happens when replacing phone?
• complex protocol with 4 layers of ECC and 3 of symmetric crypto

I Uses ECC public key pairs to establish symmetric keys
• public key pairs generated at install time
• distributed via central WhatsApp server without validation

I Manual validation by select contact, item encryption
• not transparent nor user-friendly

I Preliminary conclusion
• Reading WhatsApp white paper rings loud bells
• a critical review / reverse engineering is strongly desirable

Page 92 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography Public key authentication

Entity authentication with electronic signatures

Challenge-response with electronic signature:

A −→ B : N, IdA
B −→ A : [N, IdA]PrKB

or mutual authentication

A −→ B : NB , IdA
B −→ A : [NB , IdA]PrKB

,NA, IdB
A −→ B : [NA, IdB]PrKA

I Advantage: veri�er does not require secret!
• Prover does not need to trust veri�er for protecting its keys
• Same private key can be used to authenticate in several places
• This creates privacy issues: linkability

Page 93 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography On electronic signatures

The myth of non-repudiation

I Unique advantage of asymmetric crypto :
• veri�cation of public key signature does not require a secret key
• so only the signer could have generated the signature

I Public-key advocates have used this to promote their crypto:

Public-key signatures support non-repudiation

Non-repudiation: inability after signing something to deny it

I Attributing a legal/business property to a cryptographic protocol
I Excuses for denying signature include, a.o.,
• someone else used the private key on my PC or smart card
• I did sign but not the document you are showing me
• the crypto has been broken
• . . .

I It is about rules, terms and conditions and agreeing with them

Page 94 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography On electronic signatures

Electronic vs. ordinary signatures

I Ordinary signature

• produced by human, expressing clear intent
• the same on all documents
• one person typically has one signature
• easy to forge, but embedded in established usage context

I Electronic signature

• di�erent for each signed document
• person may have multiple key pairs, e.g., 1 business, 1 personal
• electronic signatures can be legally recognized

I In Europe: EU directive 1999/93/EC
I requires certi�ed secure signature-creation device
I in practice: an ID chip card containing private key(s)
I legal validity implies PKI with government-approved CA
I conditions for NL at pkioverheid.nl

• crypto is mature, deployment still problematic

Page 95 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography On electronic signatures

Electronic signatures, the ID chip card

I The private keys should at all time be under control of the user
• the ID card signs a string presented to it with its private key(s)
• requires prior submission of a PIN
• retrieving the private key from the chip should be hard
• key pairs should be generated on-card
• this makes generating certi�cates very problematic: how can the

CA know the public key has been generated on a valid chip?
I In the design one anticipated two main use cases:
• entity authentication with challenge-response: for access to web

sites, infrastructure, etc.
• document signing, where a hash is presented to a card
• A user should be in control of whether he does one or the other

Page 96 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography On electronic signatures

Electronic signatures, the ID chip card (cont'd)

I Two key pairs:
• one for active authentication
• one for non-repudiation (sic)

I each key has its own PIN
• so the user is in principle aware of what (s)he is doing

I a more cost-e�ective solution
• a single key pair for both operations
• two separate PINs for the functions
• distinguish hashes (sign) from challenges (auth) with domain

separation
I Scenario upon presentation of x to chip (single-key case)
• x can be h(m) or a challenge
• if sign PIN was presented, chip returns [x |0]PrK
• if auth PIN was presented, chip returns [x |1]PrK
• if no valid PIN was presented, chip returns error

Page 97 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography On electronic signatures

Electronic signatures, the user interface

I Classical approach: card reader with IC card connected to PC
• PC has dedicated signing software, e.g., as plugin for a mail

client
• guidance is done on PC screen
• input must be done done on PC keyboard

I Lots of attack possibilities in the PC
• intercept PINs, for signing without the card owner
• show a di�erent message on the screen, etc.

I attempt at dealing with PC problem
• tamper-evident, dedicated, non-updateble signature devices
• like e-book readers, with only a screen, card reader and keypad
• simplicity and limited functionality allows getting security

assurance for such a device
• not cool: public would prefer a secure app on their smartphone

Page 98 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography On electronic signatures

Example of modern card reader with pin pad

I For use with German e-Identity card neue Personalausweis (nPA)
I Interfaces for both contact and contactless cards
I Certi�ed by BSI; cost: 30-50 e

Page 99 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography On electronic signatures

Server-side signatures (beware of snake-oil)

I So far we have assumed that the signer has his private keys locally
• solid: he signs with ID chip card in dedicated card reader
• less solid: he signs with his smartphone or laptop
• concerns: leakage of key pair or loss of private key

I Server-side signature approach:
• private key is (in secure hardware module) on some remote server
• keys very well protected against leakage and loss
• signer authenticates to server, and then pushes sign button
• attempt to address non-repudiation myth

I Problems of server-side signatures
• can the sysadmin sign on behalf of everyone else?
• strong user authentication requires secret keys anyway
• example: Digidentity

I uses one-time-password via SMS as user authentication
I recognized as quali�ed signatures (what a wonderful world!)

Page 100 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography On electronic signatures

Discrete logarithm in (Z∗
p,×) with prime p

Remember: (Z∗p,×) is just (Zp−1,+) in disguise!

I Let g be a generator of (Z∗p,×)
I Let A = g a and B = gb

• then A× B = g a × gb = g a+b mod p−1

• multiplication A× B reduces to addition a+ b
• exponentiation Ae reduces to multiplication a · e

I Requires knowledge of exponent a (and b), given A (and B)
I Finding this exponent is called discrete log
I Discrete log is hard if p is large

Example:
I discrete exp: �nd X that satis�es X ≡ 295 (mod 149)
I discrete log: �nd x that satis�es 2x ≡ 124 (mod 149)

Page 102 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Discrete-log based cryptography

Discrete logarithm problem

Discrete log problem in a cyclic group 〈g〉
Given h ∈ 〈g〉, �nding n < #g that satis�es h = gn

I The discrete log problem is hard in (Z∗p,×) for large p
• solving a discrete log problem modulo p with p an n-bit prime is

about as hard as factoring an n-bit RSA modulus
I It is also hard for many other groups, e.g.,
• in cyclic subgroups of large order q of (Z∗p,×) with q≪ p
• elliptic curve groups

I Elliptic curve cryptography (ECC) (see later)
• discrete log in ECC is much harder than for (Z∗p,×)
• for same security strength, compared to RSA:

I shorter keys, signatures and cryptograms
I faster key establishment, signing and key pair generation
I but slower signature veri�cation

Page 103 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Discrete-log based cryptography

Discrete log based crypto: key pairs

I Key pairs:
• private key: a ∈ Z#g

• public key: A = g a ∈ 〈g〉
• domain parameters: 〈g〉, the cyclic group we work in

I Similarities with RSA
• computing private key from public key is hard problem
• public key authentication is crucial for security
• there is mathematical structure

I Di�erences with RSA
• domain parameters: you don't have that in RSA
• key pair generation: take random a and compute A = g a

I Key pairs for (Z∗p,×)
• private key: a ∈ Zp−1
• public key: A = g a ∈ Z∗p
• domain parameters: p and g

Page 104 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Discrete-log based cryptography

Ralph Merkle, Martin Hellman, Whit�eld Di�e

Invented public key cryptography in 1976!

Page 105 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Discrete-log based cryptography Di�e-Hellman key exchange

(Merkle)-Di�e-Hellman key exchange

I public-key based establishment of a shared secret
I Alice and Bob establish a secret key KAB

• Alice has PrKAlice = a and PKAlice = A (= g a)
• Bob has PrKBob = b and PKBob = B (= gb)

I The protocol (simple static �avour): exchange of public keys

Alice −→ Bob : A
Bob −→ Alice : B

I Computation of the shared secret:
• Bob uses his private key b to compute KAB = Ab

• Alice uses her private key a to compute KAB = Ba

• Correctness: Ab = (g a)b = g a·b = (gb)a = Ba

Page 106 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Discrete-log based cryptography Di�e-Hellman key exchange

Di�e-Hellman key exchange: attention points

I Security
• eavesdropper Eve needs either a or b to compute KAB

• given 〈g〉,A and B, predicting KAB should be hard
• called the (decisional) Di�e-Hellman hardness assumption
• seems as hard as the discrete log problem but no proof (yet)

I Domain parameters: both need to work in the same cyclic group
I Public key authentication
• If Alice validated Bob's public key, she knows only Bob has KAB

• If Bob validated Alice's public key, he knows only Alice has KAB

I Entity authentication?
• can be done with symmetric crypto challenge-response using KAB

• along with encryption, message authentication
• often one uses h(IntegerToString(KAB)) for deriving

symmetric keys from KAB

Page 107 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Discrete-log based cryptography Di�e-Hellman key exchange

Di�e-Hellman key exchange: cases

I Mutual authentication: both parties authenticate public keys
I Unilateral authentication:
• Alice authenticates Bob's public key but not vice versa
• Alice still has guarantee that Bob is only other party having KAB

• only Bob can decipher what she enciphers with KAB

• only Bob can generate MACs with KAB

I TLS (https) mostly uses unilateral authentication
• browser authenticates public key of website
• website does not authentication public key of browser

I Static Di�e-Hellman: Alice and Bob have long-term keys
• limitation: KAB is always the same
• for symmetric crypto: requires nonces across multiple sessions
• leakage of KAB , a or b allows decryption of all past cryptograms
• wish for forward secrecy: leakage of KAB , a or b not a�ecting

past cryptograms

Page 108 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Discrete-log based cryptography Di�e-Hellman key exchange

Di�e-Hellman key exchange with forward secrecy

I Consider unilateral case where Bob does not validate Alice's key
• Alice can generate fresh keypair (a,A) for each session/message
• this is called an ephemeral key pair
• leaking KAB or a only a�ects single session/message
• leaking b still a�ects all communication between Alice and Bob

I Dynamic Di�e-Hellman
• Alice generates ephemeral key pair (a,A) per session
• Bob generates ephemeral key pair (b,B) per session
• auth. of A: Alice signs (Alice,A,N) with long term PrKA

• Bob veri�es Alice's signature using the validated PKA

• in mutual authentication: also vice versa
• now leakage of KAB , a or b only a�ects a single session
• after the session Alice deletes KAB and a, Bob deletes KAB and b
• this o�ers forward secrecy

I Ephemeral key pairs in RSA would work too but very expensive

Page 109 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Discrete-log based cryptography Di�e-Hellman key exchange

Di�e-Hellman explained via mixing of colours

(source: Wikipedia)

Page 110 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Discrete-log based cryptography Di�e-Hellman key exchange

Di�e-Hellman in action: e-passports

I We saw the Basic Access Control (BAC) protocol for e-passports
• terminal access to passport chip via Machine Readable Zone

(MRZ)
• restricted to less sensitive data, also on the passport paper

I There is also an Extended Access Control (EAC) protocol
• for the more sensitive biometric date, like �ngerprints

(EAC is done after BAC)

• introduced later (since 2006) by German BSI
• involves two subprotocols

I Chip Authentication (CA), using ephemeral Di�e-Hellman
I Terminal Authentication (TA), using certi�cates: for giving

access to biometric data
• Here we sketch how CA works

Page 111 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Discrete-log based cryptography Di�e-Hellman key exchange

Chip Authentication (from EAC)

PsP
g sp

(sp is static DH key)
// Rdr

PsP Rdr
g sR

(sR is ephemeral DH key)
oo

K = g sP sR :fresh shared secret;
derived to two keys: Kenc,Kmac

PsP
Kmac{g sR}

// Rdr

Rdr now authenticated PsP as it knows
I PsP must have shared secret K
I so PsP has private key sP matching the public key g sP

Page 112 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Discrete-log based cryptography Di�e-Hellman key exchange

NSA breaking encrypted connections

CCS 2015 paper Imperfect Forward Secrecy: How Di�e-Hellman Fails in
Practice explains:
I Di�e-Hellman is used for VPNs, https websites, email, etc.
I Many implementation use the same domain parameters
• a 1024 bit prime p
• a particular generator g ∈ Zp

I A very large look-up table can be compiled
• to e�ciently solve discrete log in this group
• authors estimate that this could be done for $100M
• NSA may have budget for that

I This could explain suggestions in Snowden documents that the NSA
has access to encrypted connections.

Page 113 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Discrete-log based cryptography Di�e-Hellman key exchange

Student feedback after exam in 2012

Page 114 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Discrete-log based cryptography Di�e-Hellman key exchange

El Gamal: discrete-log based encryption

Encryption with public key A
I convert cleartext M to element m ∈ 〈g〉
I randomly generate ephemeral key pair (r ,R = g r)
I de�ne cryptogram as {m}A =

(
R, m · Ar

)
I multiplying m with random Ar and giving R as side info
Decryption with private key a
I Assume ciphertext c = (c1, c2), with ci ∈ 〈g〉
I de�ne recovered plaintext as [(c1, c2)]a =

c2
(c1)a

I removing the factor Ar by dividing by Ra = Ar

Correctness

I For A = g a we get:

[{m}A]a = [R,m · (g a)r]a =
m · g a·r

(g r)a
=

m · g a·r

g a·r = m

Page 115 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Discrete-log based cryptography El Gamal encryption and signature

El Gamal style signature (AKA DSA)

Signing with private key a of message m
I randomly generate ephemeral key pair (r ,R = g r) with

gcd(r ,#g) = 1

signa(m) =
(
R,

h(m)− a · R
r

mod#g
)

Veri�cation of m, (s1, s2) with public key A ∈ 〈g〉
I check the equation:

gh(m) ??
=

(
s1
)s2 · As1

�

�
	Notice: no decryp-

tion, just checking

Correctness

I r · s2 ≡ h(m)− a · R = h(m)− a · s1mod#g so that:
I h(m) ≡ r · s2 + a · s1 (mod #g) and so:
I gh(m) = g r ·s2+a·s1 =

(
g r
)s2 · (g a

)s1 = Rs2 ·
(
g a
)s1 = (s1)s2 · As1

Page 116 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Discrete-log based cryptography El Gamal encryption and signature

Example calculation I

Take G = Zp for p = 107 and g = 10 ∈ G with order q = 53.
I Keys: private x = 16; public y = g x = 1016 = 69mod 107
I Encryption: of m = 100 ∈ G with random r = 42 gives:

(g r , y r ·m) = (1042, 6942 · 100) = (4, 11)

I Decryption: of (4, 11) is 11
4x

• 4x = 416 = 29 and 1
29

= 48mod 107

• Hence 11
4x

= 11 · 48 = 100mod 107

(For modular calculation use eg: http://ptrow.com/perl/calculator.pl)

Page 117 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Discrete-log based cryptography El Gamal encryption and signature

http://ptrow.com/perl/calculator.pl

Example calculation II

Still with the same p = 107, g = 10, q = 53, x = 16, y = 69,
I Sign: H(m) = 100 with random r = 33
• We have g r = 1033 = 102mod 107
• and: 1

r = 1
33

= 45mod 53
• next:

H(m)− x · g r

r
= (100− 16 · 102) · 45 = 5 · 45 = 13mod 53

• The signature is thus: (102, 13).

I Veri�cation: of (s1, s2) = (102, 13)
• �rst, gH(m) = 10100 = 34mod 107
• and also: (s1)

s2 · y s1 = 10213 · 69102 = 62 · 4 = 34mod 107.

Page 118 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Discrete-log based cryptography El Gamal encryption and signature

Background, for mathematicians only

I The primes p = 107 and q = 53 in the example satisfy p = 2q + 1
I We said we use G = Zp, but actually it's G = Z∗p
I The order of Z∗p is p − 1 = 2q
I In general, if g ∈ G is of order q, then it corresponds to a subgroup

of G of order q, generated by g i ∈ G
• If this subgroup is of prime order q, then the �Decisional

Di�e-Helmann� assumption is believed to hold
I Formally, we have an embedding of groups:

Zq −→ Z∗p = G given by i 7−→ g i

Zq is identi�ed with the subgroup 〈g〉 generated by G .
• these exponents i have to computed modulo q

Page 119 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Discrete-log based cryptography El Gamal encryption and signature

Background on Elliptic Curve Cryptography

I Koblitz and Miller proposed the use of elliptic curves for
cryptography in the mid 1980's
• group operation is given by addition of points on a curve
• mainstream public key crypto nowadays

I Provides the functionality of RSA and more
• smaller keys
• pairings (advanced, cool topic)

I Standard public key cryptography for embedded platforms (smart
cards, e.g., e-passport, sensors, etc.)

I Key lengths (in bits) for comparable strength (source: NIST):

security modulus length
strength RSA ECC

80 1024 160
128 3072 256
256 15360 512

Page 120 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Discrete-log based cryptography Elliptic curves

Addition on an elliptic curve over the real numbers

Elliptic curves are given by equations such as: y2 = x3 + ax + b

Addition P + Q = R and P ′ + P ′ = 2 · P ′ = R ′ is given by:

There are also explicit formulas for such additions.

Page 121 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Discrete-log based cryptography Elliptic curves

Example curve: y 2 = x3 + 2x + 6 over �nite �eld Z37

x

y

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b
(1, 3)

Page 122 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Discrete-log based cryptography Elliptic curves

Repeated addition: n · P goes everywhere

x

y

bb

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

Given Q = n · G , �nding n involves basically trying all options

Page 123 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Discrete-log based cryptography Elliptic curves

Discrete Log and public keys for ECC

ECC uses additive notation so discrete log problem looks a bit funny:

scalar multiplication: [n] · G = G + · · ·+ G
Given [n] · G and G , it is hard to �nd the scalar n.

Key pairs in ECC:
I Domain parameters: the prime p, the constants a and b, generator

G and its order #G
I Private key: an integer a ∈ Z#G

I Public key: a point on the curve A = [n]G

Page 124 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Discrete-log based cryptography Elliptic curves

On PGP

Use fresh session key K for e�ciency:

A −→ B : {K}eB , K{m, [h(m)]dA}

This is basically what PGP (= Pretty Good Privacy) does, e.g., for
securing email. It is e�cient, because m may be large.

Page 126 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Public key protocols

Needham-Schroeder two-way authentication

I Originally proposed in 1978
I uses RSA encryption to achieve authentication
I Serious �aw discovered only in 1996 by Gavin Lowe
• required formal methods, namely model checking

I Can simply be �xed
I Fix can be seen as just applying appropriate domain separation

Page 127 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Public key protocols

Needham-Schroeder: original version + attack

Protocol Attack

A −→ B : {A,NA}eB
B −→ A : {NA,NB}eA
A −→ B : {NB}eB

A −→ T : {A,NA}eT
T −→ B : {A,NA}eB
B −→ T : {NA,NB}eA

T −→ A : {NA,NB}eA
A −→ T : {NB}eT
T −→ B : {NB}eB

Interpretation of the attack

If A is so silly to start an authentication with an untrusted T (who can
intercept), this T can make someone else, namely B, think he is talking
to A while he is talking to T .

Page 128 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Public key protocols

Needham-Schroeder: a �x

A −→ B : {A,NA}eB
B −→ A : {NA,B,NB}eA
A −→ B : {NB}eB

Page 129 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Public key protocols

Signature variations

I Both sign and encrypt:

A −→ B : {m, [h(m)]dA}eB

Page 130 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Public key protocols

Blind signatures: what is the point?

I Suppose A wants B to sign a message m, where B does not know
that he signs m
• Compare: putting an ordinary signature via a carbon paper

I Why would B do such a thing?
• for anonymous �tickets�, e.g., in voting or payment
• the private key may be related to a speci�c (timely) purpose
• hence B does have some control

I Blind signature were introduced in the earlier 80s by David Chaum

Page 131 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Public key protocols Blind signatures

Blind signatures with RSA

Let (n, e) be the public key of B, with private key (n, d).

(1) A wants to get a blind signature on m; she generates a random r ,
computes m′ = (r e) ·mmod n, and gives m′ to B.

(2) B signs m′, giving the result k = [m′](n,d) = (m′)d mod n to A

(3) A computes:

k

r
=

(m′)d

r
=

(r e ·m)d

r
=

r ed ·md

r
≡ r ·md

r
= md = [m](n,d)

Thus: B signed m without seeing it!

Page 132 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Public key protocols Blind signatures

Blind signatures for e-voting tickets

I Important requirements in voting are (among others)
• vote secrecy
• only eligible voters are allowed to vote (and do so only once)

I There is a clear tension between these two points
I Usually, there are two separate phases:

(1) checking the identity of voters, and marking them on a list
(2) anonymous voting

I After step 1, voters get a non-identifying (authentic, signed) ticket,
with which they can vote

I Blind signatures can be used for this passage from the �rst to the
second phase

Page 133 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Public key protocols Blind signatures

Blind signatures for untraceable e-cash

Assume bank B has key pairs (ex , dx) for coins with value x

C ←→ B : authentication steps
C −→ B : �I wish to withdraw e15, as a e5 and a e10 coin�
C −→ B : r e51 · h(c1), r

e10
2 · h(c2) (with ri , ci random)

B −→ C :
(
r e51 · h(c1)

)d5 = r1 · h(c1)d5 ,
(
r e102 · h(c2)

)d10 = r2 · h(c2)d10

As a result

I C can spend signed coins (c1, h(c1)
d5 , 5); value is checkable

I the bank cannot recognise these coins: this cash is untraceable
I double spending still has to be prevented

(either via a database of spent coins, or via more crypto)

Authorities don't want such untraceable cash, because they are afraid of
black markets and losing control (see Bitcoin, later on)

Page 134 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Public key protocols Blind signatures

Public key generation

// standard lengths:512,1024,1536,2048,3072

int RSAlength = 1024;

KeyPairGenerator kpg =

KeyPairGenerator.getInstance("RSA");

kpg.initialize(RSAlength);

// may take some time for big lengths

KeyPair kp = kpg.generateKeyPair();

Page 136 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Public Key Crypto in Java

Extracting public key info from a Java keypair

RSAPublicKey pubkey =

(RSAPublicKey)kp.getPublic();

BigInteger

n = pubkey.getModulus(),

e = pubkey.getPublicExponent();

Page 137 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Public Key Crypto in Java

Extracting private key info from a Java keypair

RSAPrivateCrtKey privkey =

(RSAPrivateCrtKey)kp.getPrivate();

BigInteger

p = privkey.getPrimeP(),

q = privkey.getPrimeQ(),

d = privkey.getPrivateExponent(),

phi = p.subtract(

BigInteger.ONE).multiply(

q.subtract(BigInteger.ONE));

Page 138 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Public Key Crypto in Java

RSA encryption & decryption

Cipher rsaCipher =

Cipher.getInstance("RSA/ECB/PKCS1Padding");

rsaCipher.init(Cipher.ENCRYPT_MODE, pubkey);

byte[] cleartext = ...

// encipher

byte[] ciphertext =

rsaCipher.doFinal(cleartext);

// decipher

rsaCipher.init(Cipher.DECRYPT_MODE, privkey);

byte[] decipher =

rsaCipher.doFinal(ciphertext);

Page 139 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Public Key Crypto in Java

RSA encryption & decryption �by hand�

BigInteger message = ...

BigInteger enc = message.modPow(e, n);

BigInteger dec = enc.modPow(d, n);

Page 140 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Public Key Crypto in Java

	Problems in key management
	Public key crypto
	Math basics for public-key cryptography
	The RSA cryptosystem
	Rolling out public key cryptography
	Public key authentication
	On electronic signatures

	Discrete-log based cryptography
	Diffie-Hellman key exchange
	El Gamal encryption and signature
	Elliptic curves

	Public key protocols
	Blind signatures

	Public Key Crypto in Java

