
Computer Security: Public
Key Crypto
B. Jacobs and J. Daemen
Institute for Computing and Information Sciences � Digital Security
Radboud University Nijmegen
Version: fall 2016

Page 1 of 140 Jacobs and Daemen Version: fall 2016 Computer Security



Outline

Problems in key management

Public key crypto

Math basics for public-key cryptography

The RSA cryptosystem

Rolling out public key cryptography
Public key authentication
On electronic signatures

Discrete-log based cryptography
Di�e-Hellman key exchange
El Gamal encryption and signature
Elliptic curves

Public key protocols
Blind signatures

Public Key Crypto in Java

Page 2 of 140 Jacobs and Daemen Version: fall 2016 Computer Security



The blessings of crypto

Using crypto . . .
I Alice can protect her private data
I Alice and Bob can set up a secure channel
• ensure con�dentiality of content
• ensure authenticity of messages
• with respect to any adversary Eve
• over any communication medium

I GlobalCorp. Inc. can protect its business
• secure �nancial transactions
• hide customer database from competitors
• patch its products in the �eld for security/functionality
• protect intellectual property in software, media, etc.
• enforce its monopoly on games/accessories/etc.
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The curse of crypto

I Alice and Bob need to share a cryptographic key
I GlobalCorp. Inc. needs to roll out cryptographic keys
I . . . in a way such that Eve cannot get her hands on them
I The security is only as good as the secrecy of these keys

Important lesson:
I Cryptography does not solve problems, but only reduces them to . . .
• securely generating cryptographic keys
• securely establishing cryptographic keys
• keeping the keys out of Eve's hands
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Key establishment

How do Alice and Bob establish a shared secret?
I When they physically meet:
• exchange on a piece of paper or business card (unique pairs)
• on a USB stick: requires trust in stick and PC/smartphone
• but all cryptography requires trust in devices!

I When they don't meet it is harder. Two cases:
• there is a common and trusted friend
• no such friend

I For GlobalCorp. Inc. key management is much harder
• Eve is ubiquitous
• keys must be protected in the �eld
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Remote key establishment with trusted third party

Alice and Bob have a common friend Wally they trust
I Both share a key with Wally
I Alice generates a key K and sends it encrypted to Wally
I Wally decrypts Alice's key, encrypts and sends it to Bob
I Bob decrypts the cryptogram and now has K
I Alice and Bob both rely on Wally's honesty
• Did Wally send K to Bob and not to Eve?
• Wally now has K and can eavesdrop on intercepted messages

I Problem is now: getting Wally out of the equation
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Remote key establishment with trusted third
parties

Alice and Bob have a number of common friends they trust
I For each friend
• Alice randomly generates a secret key Ki

• Alice sends it to Bob via the common friend
I Alice and Bob take sum of all Ki as shared key K
I Remaining risks: conspiracy
• if friends collaborate, they can still cheat

I Remaining risks: denial-of-service
• a misbehaving friend can disturb the process and prevent key

setup
• identifying saboteur is not easy
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Remote key establishment w/o trusted third party

I Tamper-evident physically unclonable envelopes
• tamper-evident: you cannot open it without leaving traces
• unclonable: cannot fabricate one looking the same

I Sending by secure envelope:
• Alice sticks a 5 Euro banknote on the envelope with superglue
• Alice writes down the serial number of the banknote
• Alice sends a key K to Bob in the envelope
• upon receipt Bob checks that the envelope has not been opened
• Bob calls Alice and they check the banknote's serial number
• Bob gets the key K from the envelope

I Expensive and time-consuming
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Challenges in keys management for GlobalCorp.
Inc.

I Bank: getting keys in all banking cards
I Microsoft: getting software veri�cation key in all PCs
I Spotify or NetFlix: getting keys in user PC/laptop/smartphones
I Government: getting keys in ID cards and travel passports
I More complex eco-systems
• WWW: establishing keys between User PCs and internet sites
• Public sector: keys for OV-Chipkaart
• Mobile phone: imagine roaming

I etc.

Public Key cryptography to the rescue!

Page 10 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Problems in key management



Public key crypto wish list

Lamport hash chains (see exercises, assignment 7): authentication
without shared secret!

It would be nice to:
I Authenticate an entity without sharing a key with that entity
I Authenticate documents without writer's secret key:
• Electronic Signatures!

I Set up a key remotely without the need for secret channel

Public key cryptography can do all that!

. . . and much more
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Public key functionality

Public key crypto involves a counter-intuitive idea: use one key pair per
user, consisting of
I private key PrK : never to be revealed to the outside world
I public key PK : to be published and distributed freely
There are di�erent types of public-key cryptosystems. Most used:
I Signature schemes
• Alice uses PrKA for signing message: m, [m]PrKA

• anyone can use PKA for verifying Alice's signatures
I Encryption schemes
• anyone can use PKA to encipher a message meant for Alice
• Alice can decipher cryptogram with PrKA

I Key establishment
• Bob uses PrKB and PKA to compute secret KAB

• Alice uses PrKA and PKB to compute secret KAB
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Public key encryption as a form of translation

I Translation dictionaries
• Private key PrK : Dictionary Ourgeze → Dutch
• Public key PK : Dictionary Dutch → Ourgeze

I Say Alice keeps the last copy of the Ourgeze → Dutch Dictionary
• Encryption: translate to Ourgeze using PK
• Decryption: translate from Ourgeze using PrK

I Private key can be reconstructed from public key!
• Not secure?
• In pre-computer time this was a huge task!

I Same for actual public key cryptography
• private key PrK can be computed from public key PK
• just hope it's di�cult: many tried but none succeeded (so far)
• this is the basis of quasi all cryptographic security!

Page 14 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Public key crypto



Public key encryption as self-locking boxes
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Public key crypto: some history

I The idea of public key crypto and �rst key-establishment scheme
• Ralph Merkle, With�eld Di�e, Martin Hellman in 1976
• supposedly already invented at GCHQ in 1969

I The �rst public key signature and encryption scheme
• published by Rivest, Shamir and Adleman (RSA) in 1978
• supposedly already invented at GCHQ in 1970

I Elliptic Curve Cryptography
• published independently by Koblitz and Miller in 1985
• GCHQ must have overlooked this
• the dominant public key cryptosystem today

I Nowadays literally thousands of public key systems
I Current research focuses on: post-quantum crypto
• quantum computers would break all of the above
• NSA/GCHQ, Google, etc. could possibly build one
• public-key crypto that resists quantum attacks
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Some notation that is used but not explained

I Z: the set of integers: {. . .− 3,−2,−1, 0, 1, 2, 3, . . .}
I a ∈ A: this means that a is an element of a set A. For example,

2 ∈ Z means 2 is an element of the set of integers, or equivalently, 2
is an integer

I ∀: for all. E.g., ∀a ∈ Z : a+ 1 ∈ Z means: for every element of the
set of integers, that element plus one is also an integer

I ∃: exists. E.g., ∀a ∈ Z,∃b ∈ Z : a+ b = 0 means: for every integer
there exists an integer that added to that integer gives 0

I |n|: the length of the integer n in bits
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Prime numbers and factorization

I A number is prime if it is divisible only by 1 and by itself.

Prime numbers are: 2, 3, 5, 7, 11, 13, . . . . . . (in�nitely many)
I Each number can be written in a unique way as product of primes

(possibly multiple times), as in:

30 = 2 · 3 · 5 100 = 22 · 52 12345 = 3 · 5 · 823

I Finding such a prime number factorisation is a computationally hard
problem

I In particular, given two very large primes p, q, you can publish
n = p · q and no-one will (easily) �nd out what p, q are.

I Easy for 55 = 5 · 11 but already hard for 1763 = 41 · 43
I In 2009 factoring a 232-digit (768 bit) number n = p · q with

hundreds of machines took about 2 years
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Modular (clock) arithmetic

I On a 12-hour clock, the time `1 o'clock' is the same as the time `13
o'clock'; one writes

1 ≡ 13 (mod 12) ie �1 and 13 are the same modulo 12�

I Similarly for 24-hour clocks:

5 ≡ 29 (mod 24) since 5+ 24 = 29
5 ≡ 53 (mod 24) since 5+ (2 · 24) = 53
19 ≡ −5 (mod 24) since 19+ (−1 · 24) = −5

I In general, for N > 0 and n,m ∈ Z,

n ≡ m (modN) ⇐⇒ there is a k ∈ Z with n = m + k · N

In words, the di�erence of n,m is a multiple of N.
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Numbers modulo N

How many numbers are there modulo N?

One writes ZN for the set of numbers modulo N. Thus:

ZN =
{
0, 1, 2, · · · N − 1

}
For every m ∈ Z we have mmodN ∈ ZN .

Some Remarks

I Sometimes Z/NZ is written for ZN

I Formally, the elements m of ZN are equivalence classes
{k | k ≡ m (modN)} of numbers modulo N

I These classes are also called residue classes or just residues
I In practice we treat them simply as numbers
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Residues form a �ring�

I Numbers can be added (subtracted) and multiplied modulo N: they
form a �ring�

I For instance, modulo N = 15

10+ 6 ≡ 1 6− 10 ≡ 11
3+ 2 ≡ 5 0− 14 ≡ 1
4 · 5 ≡ 5 10 · 10 ≡ 10

I Sometimes it happens that a product is 1
For instance (still modulo 15): 4 · 4 ≡ 1 and 7 · 13 ≡ 1

I In that case one can say:

1

4
≡ 4 and

1

7
≡ 13
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Multiplication tables

For small N it is easy to make multiplication tables for ZN .

For instance, for N = 5,

Z5 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

I Note: every non-zero number
n ∈ Z5 has a an inverse 1

n ∈ Z5

I This holds for every Zp with p
a prime number
(more below)
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Mod and div, and Java (and C too)

I For N > 0 and m ∈ Z we write mmodN ∈ ZN

• k = (mmodN) if 0 ≤ k < N with k = m + x · N for some x
• For instance 15mod 10 = 5 and −6mod 15 = 9

I % is Java's remainder operation. It behaves di�erently from mod, on
negative numbers.

7 % 4 = 3 7mod 4 = 3
−7 % 4 = −3 −7mod 4 = 1

This interpretation of % is chosen for implementation reasons.[
One also has 7 % −4 = 3 and −7 % −4 = −3, which are unde�ned for

mod
]

I We also use integer division div, in such a way that:

n = m · (n div m) + (nmodm)

E.g., 15 div 7 = 2 and 15mod 7 = 1, and 15 = 7 · 2+ 1.
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Groups: de�nition

I Couple (A, ?) of a set A and a binary operation ?
I The binary operation must satisfy following properties:

closed: ∀a, b ∈ A : a ? b ∈ A
associative: ∀a, b, c ∈ A : (a ? b) ? c = a ? (b ? c)
neutral element: ∃e ∈ A,∀a ∈ A : a ? e = e ? a = a
inverse element: ∀a ∈ A,∃a′ ∈ A : a ? a′ = a′ ? a = e
abelian (optional) ∀a, b ∈ A a ? b = b ? a

I Notational conventions
Additive: (A,+) e = 0 a′ = −a
Multiplicative: (A,×) e = 1 a′ = a−1 or 1/a

I Groups can be �nite or in�nite, depending on A

Terminology: Group order

Order of a �nite group (A, ?), denoted #A, is number of elements in A
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Examples of groups and non-groups [for info only]

I Groups
• (Z,+), (Q,+), (R,+), (Z,+)
• (Q \ {0},×), (R \ {0},×), (C \ {0},×)

I Non-groups
• (N,+): no neutral element, no inverses
• (Z \ {0},×): elements without inverse
• (Q,×): zero has no inverse
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(Zn,+): A simple example of a �nite group

I Zn: integers smaller than n including zero
I Operation: addition modulo n

(1) c ← a+ b
(2) if c ≥ n, c ← c − n

I Notation: a+ b mod n or just a+ b
I Order of the group #(Zn,+) is n
I One group (Zn,+) for each integer n
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Cyclic behaviour in �nite groups

I Consider a sequence:
• i = 1 : a
• i = 2 : a ? a
• i = 3 : a ? a ? a
• . . .
• i = n : [n]a (additive) or an (multiplicative)

I In a �nite group (A, ?):
• ∀a ∈ A this sequence is periodic
• period of this sequence: order of a, denoted #a

Terminology: Order of a group element

The order of a group element a, denoted #a, is the smallest integer n
such that an = 1 (multiplicative) or [n]a = 0 (additive).
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Cyclic groups and generators

I Consider the set [0]g , [1]g , [2]g , . . .
I This is a group, called a cyclic group, denoted: 〈g〉
• Neutral element [0]g
• Inverse of [i ]g : [#g − i ]g

I g is called generator
I Example of cyclic group (Zn,+)
• generator: g = 1
• [i ]g = i
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Example on orders: (Z21,+)

I Order of Z21: 21
I Order of 0: 1
I Order of 1: 21
I Order of 2: 21
I Order of 3: 7
I . . .
Shortcut: �nd the smallest i such that i · x is a multiple of n

Fact: order of an element in (Zn,+)

#x = n/gcd(n, x) with
gcd(n, x): the greatest common divisor of x and n
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Greatest common divisor

I De�nition:
gcd(n,m) = greatest integer k that divides both n and m

= greatest k with n = k · n′ and m = k ·m′,
for some n′,m′

I Examples:
gcd(20, 15) = 5 gcd(78, 12) = 6 gcd(15, 8) = 1

I Properties:
• gcd(n,m) = gcd(m, n)
• gcd(n,m) = gcd(n,−m)
• gcd(n, 0) = n

Terminology: relative prime (or coprime)

If gcd(n,m) = 1, one calls n,m relative prime or coprime
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Euclidean Algorithm

Property (assume n > m > 0):
I gcd(n,m) = gcd(m, n mod m)
This can be applied iteratively until one of arguments is 0
Example:

gcd(171, 111) = gcd(111, 171 mod 111) = gcd(111, 60)
= gcd(60, 111 mod 60) = gcd(60, 51)
= gcd(51, 60 mod 51) = gcd(51, 9)
= gcd(9, 51 mod 9) = gcd(9, 6)
= gcd(6, 9 mod 6) = gcd(6, 3)
= gcd(3, 6 mod 3) = gcd(3, 0) = 3

Variant allowing negative numbers :
gcd(171, 111) = gcd(111, 171 mod 111) = gcd(111,−51)

= gcd(51, 111 mod 51) = gcd(51, 9)
= gcd(9, 51 mod 9) = gcd(9,−3)
= gcd(3, 9 mod 3) = gcd(3, 0) = 3
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Subgroups

I (B, ?) is a subgroup of (A, ?) if
• B is a subset of A
• e ∈ B
• ∀a, b ∈ B : a ? b ∈ B
• ∀a ∈ B : the inverse of a is in B

Lagrange's Theorem

If (B, ?) is a subgroup of (A, ?): #B divides #A

I Case of cyclic subgroup: ∀a ∈ A :< a > is a subgroup of (A, ?)

Corollary (for order of elements)

For any element a ∈ A: #a divides #A
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(Zn,×): A group?

I ×: Multiplication modulo n
I are group conditions satis�ed?
• closed: yes!
• associative: yes!
• neutral element: 1
• inverse element: no, 0 has no inverse

I Let us exclude 0: so (Zn \ {0},×)
I Check properties again with multiplication table
I Examples:

(1) (Z5 \ {0},×): OK!
(2) (Z21 \ {0},×): NOK!
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(Z∗
p,×) with prime p: a cyclic group!

I Z∗p denotes Zp with 0 removed
I Order of the group is p − 1
I Group turns out to be cyclic
I Inverse of an element x :
• Order of an element divides order of the group p − 1
• xp−1 = 1
• So x−1 = x (p−1)−1 = xp−2

• Problem: this costs p − 3 multiplications (at �rst sight . . . )

Multiplicative prime groups

(Z∗p,×) is a cyclic group of order p − 1

Page 35 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Math basics for public-key cryptography



(Z∗
p,×) with prime p

Multiplicative prime groups

(Z∗p,×) is a cyclic group of order p − 1

Alternative way of seeing it:
I Find a generator g ∈ (Z∗p,×)
I Write elements as powers of the generator: g i

I Multiplication: �nd c such that g c = g a × gb

I Clearly: g a × gb = g a+b = g a+b mod p−1

I So c = a+ b mod p − 1
(Z∗p,×) is just (Zp−1,+) in disguise!

Example: (Z∗23,×) and (Z22,+) are similar
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Back to (Zn,×) with n no prime

I We remove 0: Z∗n
I Inspection of multiplication table reveals some a× b = 0
• this implies a · b = k · n for some k
• a cannot be a multiple of n as a < n
• b cannot be a multiple of n as b < n
• from factorization of both sides, a must be multiple of factor of n
• same for b
• so a is not coprime to n and b is not coprime to n

I We now re-de�ne Z∗n:
• all integers < n coprime to n, so with gcd(x , n) = 1
• closed: if gcd(a, n) = 1 and gcd(b, n) = 1, then gcd(ab, n) = 1
• does every element have an inverse?
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Extended Euclidean Algorithm

The extended Euclidean algorithm returns a pair x , y ∈ Z with
n · x +m · y = gcd(n,m)
Our earlier example:

−51 = 171− 2 · 111
9 = 111+ 2 · (−51)
3 = (−51) + 6 · 9
0 = (−9) + 3 · 3

And now backward substitution:

3 = (−51) + 6 · 9
3 = (−51) + 6 · (111+ 2 · (−51))
3 = (−51) + 6 · 111+ 12 · (−51)
3 = 6 · 111+ 13 · (−51)
3 = 6 · 111+ 13 · (171− 2 · 111)
3 = 6 · 111+ 13 · 171− 26 · 111
3 = 13 · 171− 20 · 111
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Relative primes lemma

Relative primes Lemma [Important]

m has multiplicative inverse modulo N (i.e., in ZN) i� gcd(m,N) = 1

Proof (⇒) Extended gcd yields x , y with m · x + N · y = gcd(m,N) = 1.
Taking both sides modulo N gives m · x mod N = 1, or x = m−1

(⇐) We have m · x ≡ 1modN so there is an integer y such that
m · x = 1+ N · y or equivalently m · x − N · y = 1. Now gcd(m,N)
divides both m and N, so it divides m · x − N · y = 1. But if gcd(m,N)
divides 1, it must be 1 itself. �

Note: Multiplicative inverse can be computed with extended Euclidean
algorithm (with version more optimized than our example)

Corollary

For p a prime, every non-zero n ∈ Zp has an inverse (Zp is a �eld)
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What is the order of (Z∗
n,×)?

We now know (Z∗n,×) is a group but don't know its order

De�nition: Euler's totient function

Euler's totient function of an integer n, denoted φ(n), is the number of
integers smaller than and coprime to n.

I Clearly #(Z∗n,×) = φ(n)
I For prime p, all integers 1 to p − 1 are coprime to p: φ(p) = p − 1
I If n = a · b with a and b coprime: φ(a · b) = φ(a)φ(b)
I For the power of a prime pn: φ(pn) = (p − 1)pn−1

I Computing φ(n):
• factor n into primes and their powers
• apply φ(pn) = (p − 1)pn−1 to each of the factors

I Computing φ(n) is as hard as factoring n
I As xφ(n) mod n = 1, we can compute x−1 = xφ(n)−1 mod n

Page 40 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Math basics for public-key cryptography



Number-theoretic theorems [Background info]

Euler's theorem (Lagrange's theorem applied to (Z∗
N ,×))

If gcd(m,N) = 1, then mφ(N) ≡ 1modN

PROOF Write Z∗
N = {x1, x2, . . . , xφ(N)} and form the product:

x = x1 · x2 · · · xφ(N) ∈ Z∗
N . Form also y = (m · x1) · · · (m · xφ(N)) ∈ Z∗

N . Thus

y ≡ mφ(N) · x . Since m is invertible the factors m · xi are all di�erent and equal

to a unique yj ; thus x = y . Hence mφ(N) ≡ 1. �

Fermat's little theorem

If p is prime and m is not a multiple of p then mp−1 ≡ 1mod p

PROOF Take N = p in Euler's theorem and use that φ(p) = p − 1. �

Used as primality test for p: try out if mp−1 ≡ 1 for many m.
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Exponentiation by Square-and-Multiply

I Computing ae mod n in naive way takes e − 1 modular
multiplications

I Infeasible if a, e and n are hundreds of decimals
I More e�cient method: square-and-multiply
I Example: computing g12 with left-to-right square-and-multiply
• g2 = g × g
• g4 = g2 × g2

• g8 = g4 × g4

• g12 = g8 × g4

I Only 3 squarings and 1 multiplication
I Instead of 11 in naive method

Page 42 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Math basics for public-key cryptography



Exponentiation by Square-and-Multiply (cont'd)

I Computing g12 with right-to-left square-and-multiply
• g2 = g × g
• g3 = g2 × g
• g6 = g3 × g3

• g12 = g6 × g6

I Many variants exist, typical computation cost for ae mod N:
• |e| squarings, with |e| the bitlength e
• 1 to |e| multiplications, depending on e and method

I Relatively cheap
• This is why RSA, DH and elliptic curve crypto actually work
• Computing x−1 mod n by xφ(n)−1 mod n much cheaper than by

extended Euclidean algorithm
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Ron Rivest, Adi Shamir, Leonard Adleman

Designed their famous cryptosystem in 1977-1978
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What is the RSA cryptosystem?

RSA is a trapdoor one-way function y = f (x)
I given x , computing y = f (x) is easy
I given y , �nding x is di�cult
I given y and trapdoor info: computing x = f −1(y) is easy

The RSA public key function:

y = xe mod n with x , y ∈ Zn

Features
I (n, e) is the public key, speci�c for a particular user
I Modulus n = p · q with p and q large primes
I Exponent e, usually a small prime, e.g., 216 + 1
I Trapdoor: knowledge of p and q
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The RSA private key

The order of the group (Z∗n ,×) is φ(n) so ∀x ∈ Z∗n :

xφ(n) mod n = x (p−1)(q−1) = 1

Let d satisfy
e · d + k · (p − 1)(q − 1) = 1

then (omitting modn)

(xe)d = xe·d = x1−k·φ(n) = x · x−kφ(n) = x · (xφ(n))−k = x

(Conclusion actually holds for all x ∈ Zn)
So the RSA private key operation

x = yd mod n with d = e−1 mod φ(n)

(for info, can be optimized using so-called Chinese Remainder Theorem)
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RSA public key pair

I Public key: public exponent and modulus (e, n)
I Private key: private exponent and modulus (d , n)
I Modulus:
• n = p · q with p and q large primes

I Public exponent e
• often small prime, e.g., 216 + 1: makes computing xe light
• p − 1 and q − 1 shall be coprime to e

I Private exponent d
• exponent d is inverse of e modulo (p − 1)(q − 1)
• length of d is close to that of n: xd much slower than xe

I Security of RSA relies on di�culty of factoring n
• factoring n allows computing d from (e, n)
• p and q shall be large enough and unpredictable by attacker
• given n, knowledge of φ(n) allows factoring n and computing d
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Factoring n, given φ(n)

Assume modulus n is known

Knowledge of φ(n) allows factoring n

We have two equations n = p · q and φ(n) = (p − 1)(q − 1) or

n = p · q and φ(n) = p · q − p − q + 1

Subtracting them: q = n − φ− 1− p and �lling in in �rst equation:

n = p · (n − φ(n)− 1− p)

Working out gives the following quadratic equation in p:

p2 + (φ(n)− n − 1) · p + n = 0

Can be solved in usual way. E.g., n = 91 gives q2− 20q+ 91 = 0, and so:

q = 20±
√
400−4·91
2

= 20±6
2

= 13, 7
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Di�culty of factoring

I State of the art of factoring: two important aspects
• reduction of computing cost: Moore's Law
• improvements in factoring algorithms

I Factoring algorithms
• Sophisticated algorithms involving many subtleties
• Typically two phases:

I distributed phase: equation harvesting
I centralized phase: equation solving

• Best known: general number �eld sieve (GNFS)
I These advances lead to increase of advised RSA modulus lengths

see http://www.keylength.com/
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Factoring records
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Using RSA for encryption

The naive way:
I Bob sends message to Alice enciphered with Alice's public key
• Bob codes his message as an integer m ∈ Z
• e.g., standardized in PKCS#1 StringToInteger

• Bob computes c = me mod n with (e, n) the public key of Alice
I Alice deciphers received cryptogram
• Alice computes m = cd mod n with (d , n) her private key
• Alice decodes m as a message
• using PKCS#1 IntegerToString

PKCS: series of industry standard from RSA Laboratories.
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Using RSA for encryption: attention points

I m shall have enough entropy:
• Eve can guess m and check if c = me mod n
• e.g., EMV payment cards use RSA for encrypting PIN to card
• method: add random string r : m = StringToInteger(PIN, r)
• in symmetric encryption plaintext uniqueness (nonce) was

su�cient
I Algebraic properties of RSA: (malleability)
• e.g., given two cryptograms c1 = me

1 and c2 = me
2, Eve can

construct a cryptogram for m3 = m1 ·m2 mod n as
c3 = c1 · c2 mod n, without knowing m1 or m2 as
c1 · c2 = me

1 ·me
2 = (m1 ·m2)

e

I Length of message is limited and de�ning modes is hard
I RSA decryption is relatively slow
Current advice by experts: don't encipher data with RSA
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Using RSA for encryption: solutions

I Apply a hybrid scheme:
• use RSA for establishing a symmetric key
• encipher and authenticate with symmetric cryptography

I Sending an encrypted key
• addition of redundancy before encryption
• veri�cation of redundancy after decryption
• if NOK, return error

I Many proposals:
• best known standard: PKCS #1 v1.5 and v2 (e.g. OAEP)
• rather complex and not clear if objectives are achieved

I despite the problems, this is still the most widespread method
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Example: PKCS#1 v1.5 padding for encryption

INPUT: Recipient's RSA public key, (n, e) of length k = |n|/8 bytes;
payload D (e.g., a symmetric key) |D| ≤ 8(k − 11).
OUTPUT: Encrypted block of length k bytes

(1) Form the k-byte encoded block, EB

EB = 00 ‖ 02 ‖ PS ‖ 00 ‖ D

where PS is a random string k − |D| − 3 non-zero bytes
(ie. at least eight random bytes)

(2) Convert byte string EB to integer m = StringToInteger(EB, k).

(3) Encrypt with RSA: c = me mod n

(4) Convert c to k-byte output block OB = IntegerToString(c , k)

(5) Output OB.
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PKCS#1 v1.5 encryption padding example

Assume a RSA public key (n, e) with n 1024 bit long.

As data D, take a (random) AES-128 key, such as:

D = 4E636AF98E40F3ADCFCCB698F4E80B9F

Message block EB with random padding bytes shown in green:

EB = 0002257F48FD1F1793B7E5E02306F2D3

228F5C95ADF5F31566729F132AA12009

E3FC9B2B475CD6944EF191E3F59545E6

71E474B555799FE3756099F044964038

B16B2148E9A2F9C6F44BB5C52E3C6C80

61CF694145FAFDB24402AD1819EACEDF

4A36C6E4D2CD8FC1D62E5A1268F49600

4E636AF98E40F3ADCFCCB698F4E80B9F

The random padding makes me mod n di�erent each time
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Using RSA for encryption: the solution

RSA Key Establishment Method (KEM)
I Bob randomly generates r ∈ Zn

I Bob sends c = r e mod n to Alice
I Alice deciphers c back to r
I both compute shared secret as hash(r)

RSA-KEM is THE sound way to use RSA for establishing a key
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Using RSA for signatures

The naive way:
I Alice signs message with her private key
• Alice codes her message as an integer m in Zn

• Alice computes s = md mod n with (d , n) her private key
I Bob veri�es the signed message (m, s)
• Bob computes m′ = se mod n with (e, n) the public key of Alice
• He checks that m′ = m
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Using RSA for signatures: attention points

I Limitation on message length (and secure modes are hard to de�ne)
• instead of m, we input StringToInteger(h(m))
• additional bene�t: becomes much faster

I RSA malleability
• given two signatures s1 = md

1 and s2 = md
2 , Eve can construct a

signature for m3 = m1 ·m2 mod n by computing
s3 = s1 · s2 mod n.

• generation of signature of message without knowing private key
I solution: speci�c padding schemes, e.g. PKCS # 1 v1.5 or v2 (PSS)
• adds redundancy by padding
• applies hashing for destroying algebraic structure
• e.g., s1 · s2 no longer veri�es as a valid signature
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RSA Probabilistic Signature Scheme (PSS)

(MGF = XOF)
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RSA e�ciency

I Private exponentiation:
• Square and multiply
• grows with the third power of the modulus length
• e.g., modulus length ×2: computation time goes ×8

I Public exponentiation:
• more e�cient thanks to short public exponent

I Key generation:
• randomly generating large primes p and q
• About 15 to 40 times the e�ort of a private exponentiation
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RSA key pair generation

A user generating an RSA key pair with given modulus length |n|:
I chooses the public exponent e
• Often a small prime imposed by the context
• Sometimes randomly generated per user, e.g. 256 bits

I randomly generates prime p of given length ` = |n|/2
• p − 1 shall be coprime to e

I randomly generates prime q such that p · q has length |n|
• q − 1 shall be coprime to e

I computes modulus n = p · q
I computes private exponent d as e−1 modulo (p − 1)(q − 1)
I Attention points [for info only]:
• RSA works with p, q of any length but often software requires

that |n| is a multiple of 8 (or 32) and |p| = |q| = |n|/2
• There are multiple valid values of d < (p − 1)(q − 1) but just

one < lcm(p − 1)(q − 1) = (p − 1)(q − 1)/gcd(p − 1, q − 1)
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Generation of random primes

Randomly generating a prime of given given length `:
I generate string of `− 2 random bits
I put a 1 before and after
I interpret the result as an integer x : odd integer length `
I repeat following loop:
• if gcd(x − 1, e) 6= 1, go to last step of the loop
• randomly choose b and do Fermat test: bx−1 mod x = 1?
• if it fails the test, go to last step of the loop
• do w more Fermat tests for randomly chosen b
• if it passes all tests, return p = x
• add 2 to x and try again

(Just an example, several other approaches)

Suggestion: program this in Python!
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Generation of random primes: attention points

I Execution time: long and variable
• takes several exponentiations
• trial and error: sometimes lucky, sometimes not

I Optimization
• trial division by small primes: 3, 5, 7, 11, · · ·
• �xing the base b to small numbers: 2, 3, . . .
• variant of Fermat test: Rabin-Miller, slightly more e�cient

I Security
• result can still be non-prime but probability decreases with

number of Fermat tests w
• unpredictability of random generator is crucial!

I Special features
• range of result is [2` + 1, 2`+1 − 1]
• for di�erent range: �x most signi�cant bits
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RSA toy example, calculated by hand

I Choose e = 3
I Take p = 5, q = 11, so that n = p · q = 55 and φ(n) = 40
• OK: both p − 1 and q − 1 are coprime to e

I Compute d = 1
e = 1

3
∈ Z∗40 with extended Euclidean algorithm:

• it yields x , y ∈ Z with 40x + 3y = 1, so that d = 1
3
= y

• By hand: 3−1 mod 40 = −13 = 27
(indeed with 40 · 1+ 3 · −13 = 40− 39 = 1)

I Let message m = 19 ∈ Zn

• encipher c = me mod n = 193 mod 55 = 39
• decipher m′ = cd mod n = 3927 mod 55 = 19
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The Achilles' Heel of (public key) cryptography

Cryptography does not solve problems, but only reduces them
I In public key cryptography, problems are reduced to:

Authentication of public keys

I How do we know whether PKA actually belongs to Alice, when
• we verify a signature with PKAlice?
• we establish a shared secret using PKAlice?
• we authenticate someone using PKAlice?

I PKAlice could actually be the public key of Trudy
I Need: authenticate link between public key and its owner
I In many practical systems this issue is not well addressed
• one of main reasons for the miserable level of security in IT
• same mistakes made again and again (see next slides)
• problem of human behaviour rather than technology
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Methods of public key authentication

Say, Bob wants to use Alice's public key
I He can obtain it via email, Alice's homepage, business card, . . .

There are essentially three methods:
I Manual: Bob relies on Alice alone
I Web of trust: Bob relies on their mutual friends
I Certi�cate Authority (CA): Bob relies on a central authority
. . . and: Trust on First Use (TOFU): Bob knocks on wood

Systems for public key authentication (and revocation) are called Public
Key Infrastructures (PKI). Most of the time, the term PKI is used as a
synonym of the CA method.
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Manual public key validation

I Bob checks with Alice if his copy of PKA matches that of Alice
• e.g., face-to-face, via phone or video-call
• email will NOT do
• requires that Bob veri�es he is actually talking to Alice

I Often one uses a hash
• verifying h(PKB , IdB) instead of key PKB directly
• hash function shall be 2nd preimage resistant
• reader-friendly coding of the hash: �ngerprint

I Most reliable method
• very rarely used
• main problem: requires users to be security-aware

I a public key crypto pioneer: Phil Zimmerman
• 1991: creates PGP secure email, supporting key validation
• now: at Silent Circle (e.g. blackphone), settling with TOFU
• you cannot be idealistic all your life
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Web-of-trust public key authentication

Crowd style (�trust what your friends say�, bottom-up)
I Say Alice and Bob have a common friend: Wally
• Bob already has an authentic copy of PKW : Wally's public key
• Wally already veri�ed that his copy of PKA is authentic
• Bob asks Wally to sign 〈Alice,PKA〉 with his private key PrKW

• Bob can now verify this signature (certi�cate) using PKW

I For more assurance, Bob can ask multiple friends to sign 〈Alice,PKA〉
I Di�erence with symmetric-key case
• symmetric: Wally has shared key and can cheat undetectedly
• here Wally can sign 〈Alice,PKW ′〉 instead of 〈Alice,PKA〉
• . . . and can decipher Bob's messages and/or sign as Alice
• but: Bob and Alice can catch Wally by manual validation

I Feature introduced by Phil Zimmerman in PGP
• same problem: requires security-aware users
• PGP (and gpg) usage in practice nowadays: mostly TOFU
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Web of trust: signing parties

I People meet to check each other's identity
I and exchange public key �ngerprints: (truncated) hashes of public

keys (BJ's is 0xA45AFFF8)
• beware of 2nd preimages!

I to later look up the keys corresponding to the �ngerprint and sign
them

(source: http://xkcd.com/364/)
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Certi�cate Authority

Phone-book style (�trust what an authority says�, top-down)
I use a trusted list of pairs 〈name, PKname〉
I but who can be trusted to compile and maintain such a list?
I this is done by a Certi�cate Authority (CA)
• a super-Wally that signs public keys to be trusted by everyone

I Basic notion: public key certi�cate, i.e. signed statement:[
�Trustee declares that the public key of X is PKX ;

this statement dates from (start date) and is valid

until (end date), and is recorded with (serial nr.)�
]
PrKTrustee

I There are standardised formats for certi�cates, like X.509
I The term (public key) certi�cate is often abused
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Public Key Infrastructure (PKI)

I Certi�cation Authority (CA)
• generates public key certi�cates
• publishes certi�cate revocation lists for compromised keys
• can be done in multiple levels: root CA and intermediate ones

I Registration Authority
• part of CA that veri�es the identity of the user
• expensive part: administrative and legal aspects

I Most CAs are commercial companies, like VeriSign, Thawte,
Comodo, or DigiNotar (now �dead�)

I O�er di�erent levels of certi�cates, depending on the thoroughness
of identity veri�cation in registration
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Example veri�cation, by VeriSign

VeriSign o�ers three assurance levels for certi�cates

(1) Class 1 certi�cate: only email veri�cation for individuals:
�authentication procedures are based on assurances that the
Subscriber's distinguished name is unique within the domain of a
particular CA and that a certain e-mail address is associated with a
public key�

(2) Class 2 certi�cate: �veri�cation of information submitted by the
Certi�cate Applicant against identity proo�ng sources�

(3) Class 3 certi�cate: �assurances of the identity of the Subscriber
based on the personal (physical) presence of the Subscriber to
con�rm his or her identity using, at a minimum, a well-recognized
form of government-issued identi�cation and one other identi�cation
credential.�
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Where do I �nd someone else's certi�cate?

I The most obvious way to obtain a certi�cate is: directly from the
owner

I From a certi�cate directory or key server, such as:
• pgp.mit.edu

(you can look up BJ's key there, and see who signed it)

• subkeys.pgp.net etc.

I The root public keys are pre-con�gured, typically in browsers.
• Often called �root certi�cates�, but they aren't
• E.g., in �refox look under Preferences - Advanced - View

Certi�cates
• On the web:

www.mozilla.org/projects/security/certs/included

Page 75 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Rolling out public key cryptography Public key authentication

pgp.mit.edu
subkeys.pgp.net
www.mozilla.org/projects/security/certs/included


Certi�cate (PKI) usage examples

I �Secure webaccess� via server-side certi�cates, recognisable via:

• Protocols: TLS and https
• Allows user to authenticate website content
• Protects con�dentiality of web tra�c between user and site
• Allows continued usage of passwords and card nr. based credit

car payments
I Code signing, for integrity and authenticity of downloaded code
I EMV payment with smart cards: VISA, Mastercard, Maestro
I Client-side certi�cates for secure remote logic (e.g., in VPN =

Virtual Private Network)
I National ID cards and travel passports
I Sensor-certi�cates in a sensor network, against spoo�ng sensors

and/or sensor data
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Certi�cate Revocation, via CRLs

Revocation: declaring a public key certi�cate no longer valid

Possible reasons for revocation

I certi�cate owner lost control over the private key
I crypto has become weak (think of MD5 or SHA-1 hash)
I CA turns out to unreliable (think of DigiNotar)

Certi�cate Revocation Lists (CRLs)

I maintained by CAs, and updated regularly (e.g., 24 hours)
I should be consulted before every use of a certi�cate
I you can subscribe to revocation lists so that they are loaded

automatically into your browser

This is the theory, in practice there is little follow-up
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Revocation, via OCSP

I In o�-line checking, CRLs require bandwidth and local storage
• over�owing the list is possible attack scenario

I Alternative: OCSP = Online Certi�cate Status Protocol

(1) Suppose Bob wants to check Alice's certi�cate before use
(2) Bob sends OCSP request to CA with certi�cate serial nr.
(3) CA looks up serial number in its (supposedly) secure database
(4) if not revoked, it replies with a signed, successful OCSP response

I Privacy issue: with OCSP you reveal to CA which certi�cates you
use, and thus who you communicate with
• also when you communicate with someone using OCSP

Note: you are basically online with the CA, so long-term certi�cates are
not really needed.
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Certi�cate chains

Imagine you have certi�cates:

(1) [�A's public key is PKA . . . �]PrKB

(2) [�B's public key is PKB . . . �]PrKc

Suppose you have these 2 certi�cates, and C 's public key
I What can you deduce?
I Who do you (have to) trust?
I To do what?

Example: active authentication in e-passport

I private key securely embedded in passport chip
I public key signed by producer (Morpho in NL)
I Morpho's public key signed by Dutch state
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The trouble with PKI

I All participants need authentic copies of root CA public keys
• a root CA cannot have a certi�cate, per de�nition
• often does have a meaningless self-signed certi�cate
• hardcoded in software or included in software releases
• you are trusting Microsoft, Mozilla, Google, Apple, KPN . . .

I Why most PKI's have failed up to now:
• CAs in theory: trustworthy service providers that accept liability
• CAs in practice: unreliable organizations only in it for the money

I Tension between (CA) PKI concept and the essence of public key
crypto:
• PK crypto: authentication and con�dentiality without need for

pre-shared keys or trusted third party
• CA is nothing more than a trusted third party
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Problems in the TLS (https) PKI

I In your browser there are about 650 CA root keys
• Note: a common misnomer for CA root key is (CA) root

certi�cate
• whatever these CAs sign is shown as trusted by your browser

I This makes the PKI system fragile
• CAs can sign anything, not only for their customers
• e.g. rogue gmail certi�cates, signed by DigiNotar, appeared in

aug.'11, but Google was never a customer of DigiNotar

I Available controls are rather weak:
• rogue certi�cates can be revoked (blacklisted), after the fact
• browser producers can remove root certi�cates (of bad CAs)
• compulsory auditing of CAs
• via OCSP server logs certi�cate usage can be tracked

I root of the problem: lack of liability of software providers and CAs
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CACert: attempt to merge web of trust with PKI

I cacert.org provides free certi�cates, via a web-of-trust
I certi�cate owners can accumulate points by being signed by assurers
I if you have ≥ 100 points, you can become assurer yourself

Weaknesses:
I CAcert is poorly run
I It never managed to set up an audit in order to get its root key into

major browsers

Cool idea at �rst sight, but useless
I Security-aware users don't trust some self-declared CA
I CA is useful if liable, but CACert accepts none whatsoever
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Small key problem in the wild (aug.-nov. 2011)

I What happened?
• F-secure discovered a certi�cate over a key used to sign malware
• the malware targeted governments and defense industry
• certi�cate was provided by the CA DigiCert (Malaysia)
• result: Mozilla and Microsoft blocked this CA

I certi�ed public key was RSA key with modulus of 512 bits
• Fox-IT also found such malware (for �in�ltrating high-value

targets�) and claims that public keys have been brute-forced
• required time to factor 512-bit modulus: hours-weeks

(depending on hardware)
• malware signed with the resulting private key

I 512-bit RSA keys accepted by a CA and in browsers as late as 2011:
total incompetence
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DigiNotar I: background

I The Dutch CA DigiNotar was founded in 1997, based on need for
certi�cates among notaries
• bought by US company VASCO in jan'11
• �voluntary� bankruptcy in sept.'11

I DigiNotar's computer systems were in�ltrated in mid july'11,
resulting in rogue certi�cates
• DotNetNuke CMS software was 30 updates (≥ 3 years) behind
• Dutch government only became aware on 2 sept.
• it operated in �crisis mode� for 10 days

I About 60.000 DigiNotar certi�cates used in NL
• many of them deeply embedded in infrastructure (for

inter-system communication)
• some of them need frequent re-issuance (short-life time)
• national stand-still was possible nightmare scenario
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DigiNotar II: act of war against NL?

I Hack claimed by 21 year old Iranian �Comodohacker�
• he published proof (correct sysadmin password `Pr0d@dm1n')
• claimed to have access to more CAs (including GlobalSign)
• also political motivation (see pastebin.com/85WV10EL)

Dutch government is paying what they did 16 years ago about Sre-

brenica, you don't have any more e-Government huh? You turned to

age of papers and photocopy machines and hand signatures and seals?

Oh, sorry! But have you ever thought about Srebrenica? 8000 for 30?

Unforgivable... Never!

I Hacker could have put all 60K NL-certi�cates on the blacklist
• this would have crippled the country
• interesting question: would this be an act of war?
• di�cult but very hot legal topic: attribution is problematic
• traditionally, in an �act of war� it is clear who did it.
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DigiNotar III: rogue certi�cate usage (via OCSP
calls)

Main target: 300K gmail users in Iran (via man-in-the-middle)

(More info: search for: Black Tulip Update, or for: onderzoeksraad

Diginotarincident)
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DigiNotar IV: certi�cates at stake

I DigiNotar as CA had its own root key in all browsers
• it has been kicked out, in browser updates
• Microsoft postponed its patch for a week (for NL only)!
• the Dutch government requested this, in order to buy more time

for replacing certi�cates (from other CAs)

I DigiNotar was also sub-CA of the Dutch state
• private key of Staat der Nederlanden stored elsewhere
• big fear during the crisis: this root would also be lost
• it did not happen
• alternative sub-CA's: Getronics PinkRoccade (part of KPN),

QuoVadis, DigiDentity, ESG
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DigiNotar V: Fox-IT �ndings

I DigiNotar hired security company Fox-IT (Delft)
• Fox-IT investigated the security breach
• published �ndings, in two successive reports (2011 & 2012)

I Actual problem: the serial number of a DigiNotar certi�cate found
in the wild was not found in DigiNotar's systems records

I The number of rogue certi�cates is unknown
• but OCSP logs report on actual use of such certi�cates

I Fox-IT reported �hacker activities with administrative rights�
• attacker left signature Janam Fadaye Rahbar
• same as used in earlier attacks on Comodo

I Embarrassing �ndings:
• all CA servers in one Windows domain (no compartimentalisation)
• no antivirus protection present; late/no updates
• some of the malware used could have been detected
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DigiNotar VI: lessons if you still believe in CA's

I Know your own systems and your vulnerabilities!
I Use multiple certi�cates for crucial connections
I Strengthen audit requirements and process
• only management audit was required, no security audit
• the requirements are about 5 years old, not de�ned with �state

actor� as opponent
I Security companies are targets, to be used as stepping stones
• e.g., march'11 attack on authentication tokens of RSA company
• used later in attacks on US defence industry

I Alternative needed for PKI?
I Cyber security is now �rmly on the (political) agenda
• also because of �Lektober� and stream of (website) vulnerabilities
• now almost weekly topic in Parliament

(e.g., breach noti�cation and privacy-by-design)
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DigiNotar VII: Finally (source: NRC 7/9/2011)

DigiNotar has not re-emerged: it had only one chance and blew it!
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Trust on �rst use (TOFU)

Per default, no public key validation
I Bob trusts that received public key is Alice's without validation
I Man-in-the-middle risk: Eve can substitute public key by hers
I Used by the cool crowd:
• messaging service Signal
• messaging service Whatsapp
• secure mobile blackphone from Silent Circle
• . . .

I Sometimes presented as alternative to PKI
I How is it possible that people buy this nonsense?
• it promises security without the e�ort, a.o., key management
• similar to voting for populists and expecting improvement
• or eating chocolate to feel better

I It is not all bad: systems do support manual key validation
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Example of TOFU: WhatsApp

I There is a white paper describing the security protocol
• not enough detail to know what they are doing exactly
• e.g. what happens when replacing phone?
• complex protocol with 4 layers of ECC and 3 of symmetric crypto

I Uses ECC public key pairs to establish symmetric keys
• public key pairs generated at install time
• distributed via central WhatsApp server without validation

I Manual validation by select contact, item encryption
• not transparent nor user-friendly

I Preliminary conclusion
• Reading WhatsApp white paper rings loud bells
• a critical review / reverse engineering is strongly desirable
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Entity authentication with electronic signatures

Challenge-response with electronic signature:

A −→ B : N, IdA
B −→ A : [N, IdA]PrKB

or mutual authentication

A −→ B : NB , IdA
B −→ A : [NB , IdA]PrKB

,NA, IdB
A −→ B : [NA, IdB ]PrKA

I Advantage: veri�er does not require secret!
• Prover does not need to trust veri�er for protecting its keys
• Same private key can be used to authenticate in several places
• This creates privacy issues: linkability
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The myth of non-repudiation

I Unique advantage of asymmetric crypto :
• veri�cation of public key signature does not require a secret key
• so only the signer could have generated the signature

I Public-key advocates have used this to promote their crypto:

Public-key signatures support non-repudiation

Non-repudiation: inability after signing something to deny it

I Attributing a legal/business property to a cryptographic protocol
I Excuses for denying signature include, a.o.,
• someone else used the private key on my PC or smart card
• I did sign but not the document you are showing me
• the crypto has been broken
• . . .

I It is about rules, terms and conditions and agreeing with them
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Electronic vs. ordinary signatures

I Ordinary signature

• produced by human, expressing clear intent
• the same on all documents
• one person typically has one signature
• easy to forge, but embedded in established usage context

I Electronic signature

• di�erent for each signed document
• person may have multiple key pairs, e.g., 1 business, 1 personal
• electronic signatures can be legally recognized

I In Europe: EU directive 1999/93/EC
I requires certi�ed secure signature-creation device
I in practice: an ID chip card containing private key(s)
I legal validity implies PKI with government-approved CA
I conditions for NL at pkioverheid.nl

• crypto is mature, deployment still problematic
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Electronic signatures, the ID chip card

I The private keys should at all time be under control of the user
• the ID card signs a string presented to it with its private key(s)
• requires prior submission of a PIN
• retrieving the private key from the chip should be hard
• key pairs should be generated on-card
• this makes generating certi�cates very problematic: how can the

CA know the public key has been generated on a valid chip?
I In the design one anticipated two main use cases:
• entity authentication with challenge-response: for access to web

sites, infrastructure, etc.
• document signing, where a hash is presented to a card
• A user should be in control of whether he does one or the other
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Electronic signatures, the ID chip card (cont'd)

I Two key pairs:
• one for active authentication
• one for non-repudiation (sic)

I each key has its own PIN
• so the user is in principle aware of what (s)he is doing

I a more cost-e�ective solution
• a single key pair for both operations
• two separate PINs for the functions
• distinguish hashes (sign) from challenges (auth) with domain

separation
I Scenario upon presentation of x to chip (single-key case)
• x can be h(m) or a challenge
• if sign PIN was presented, chip returns [x |0]PrK
• if auth PIN was presented, chip returns [x |1]PrK
• if no valid PIN was presented, chip returns error
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Electronic signatures, the user interface

I Classical approach: card reader with IC card connected to PC
• PC has dedicated signing software, e.g., as plugin for a mail

client
• guidance is done on PC screen
• input must be done done on PC keyboard

I Lots of attack possibilities in the PC
• intercept PINs, for signing without the card owner
• show a di�erent message on the screen, etc.

I attempt at dealing with PC problem
• tamper-evident, dedicated, non-updateble signature devices
• like e-book readers, with only a screen, card reader and keypad
• simplicity and limited functionality allows getting security

assurance for such a device
• not cool: public would prefer a secure app on their smartphone
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Example of modern card reader with pin pad

I For use with German e-Identity card neue Personalausweis (nPA)
I Interfaces for both contact and contactless cards
I Certi�ed by BSI; cost: 30-50 e
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Server-side signatures (beware of snake-oil)

I So far we have assumed that the signer has his private keys locally
• solid: he signs with ID chip card in dedicated card reader
• less solid: he signs with his smartphone or laptop
• concerns: leakage of key pair or loss of private key

I Server-side signature approach:
• private key is (in secure hardware module) on some remote server
• keys very well protected against leakage and loss
• signer authenticates to server, and then pushes sign button
• attempt to address non-repudiation myth

I Problems of server-side signatures
• can the sysadmin sign on behalf of everyone else?
• strong user authentication requires secret keys anyway
• example: Digidentity

I uses one-time-password via SMS as user authentication
I recognized as quali�ed signatures (what a wonderful world!)
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Discrete logarithm in (Z∗
p,×) with prime p

Remember: (Z∗p,×) is just (Zp−1,+) in disguise!

I Let g be a generator of (Z∗p,×)
I Let A = g a and B = gb

• then A× B = g a × gb = g a+b mod p−1

• multiplication A× B reduces to addition a+ b
• exponentiation Ae reduces to multiplication a · e

I Requires knowledge of exponent a (and b), given A (and B)
I Finding this exponent is called discrete log
I Discrete log is hard if p is large

Example:
I discrete exp: �nd X that satis�es X ≡ 295 (mod 149)
I discrete log: �nd x that satis�es 2x ≡ 124 (mod 149)
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Discrete logarithm problem

Discrete log problem in a cyclic group 〈g〉
Given h ∈ 〈g〉, �nding n < #g that satis�es h = gn

I The discrete log problem is hard in (Z∗p,×) for large p
• solving a discrete log problem modulo p with p an n-bit prime is

about as hard as factoring an n-bit RSA modulus
I It is also hard for many other groups, e.g.,
• in cyclic subgroups of large order q of (Z∗p,×) with q≪ p
• elliptic curve groups

I Elliptic curve cryptography (ECC) (see later)
• discrete log in ECC is much harder than for (Z∗p,×)
• for same security strength, compared to RSA:

I shorter keys, signatures and cryptograms
I faster key establishment, signing and key pair generation
I but slower signature veri�cation
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Discrete log based crypto: key pairs

I Key pairs:
• private key: a ∈ Z#g

• public key: A = g a ∈ 〈g〉
• domain parameters: 〈g〉, the cyclic group we work in

I Similarities with RSA
• computing private key from public key is hard problem
• public key authentication is crucial for security
• there is mathematical structure

I Di�erences with RSA
• domain parameters: you don't have that in RSA
• key pair generation: take random a and compute A = g a

I Key pairs for (Z∗p,×)
• private key: a ∈ Zp−1
• public key: A = g a ∈ Z∗p
• domain parameters: p and g
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Ralph Merkle, Martin Hellman, Whit�eld Di�e

Invented public key cryptography in 1976!
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(Merkle)-Di�e-Hellman key exchange

I public-key based establishment of a shared secret
I Alice and Bob establish a secret key KAB

• Alice has PrKAlice = a and PKAlice = A (= g a)
• Bob has PrKBob = b and PKBob = B (= gb)

I The protocol (simple static �avour): exchange of public keys

Alice −→ Bob : A
Bob −→ Alice : B

I Computation of the shared secret:
• Bob uses his private key b to compute KAB = Ab

• Alice uses her private key a to compute KAB = Ba

• Correctness: Ab = (g a)b = g a·b = (gb)a = Ba
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Di�e-Hellman key exchange: attention points

I Security
• eavesdropper Eve needs either a or b to compute KAB

• given 〈g〉,A and B, predicting KAB should be hard
• called the (decisional) Di�e-Hellman hardness assumption
• seems as hard as the discrete log problem but no proof (yet)

I Domain parameters: both need to work in the same cyclic group
I Public key authentication
• If Alice validated Bob's public key, she knows only Bob has KAB

• If Bob validated Alice's public key, he knows only Alice has KAB

I Entity authentication?
• can be done with symmetric crypto challenge-response using KAB

• along with encryption, message authentication
• often one uses h(IntegerToString(KAB)) for deriving

symmetric keys from KAB

Page 107 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Discrete-log based cryptography Di�e-Hellman key exchange



Di�e-Hellman key exchange: cases

I Mutual authentication: both parties authenticate public keys
I Unilateral authentication:
• Alice authenticates Bob's public key but not vice versa
• Alice still has guarantee that Bob is only other party having KAB

• only Bob can decipher what she enciphers with KAB

• only Bob can generate MACs with KAB

I TLS (https) mostly uses unilateral authentication
• browser authenticates public key of website
• website does not authentication public key of browser

I Static Di�e-Hellman: Alice and Bob have long-term keys
• limitation: KAB is always the same
• for symmetric crypto: requires nonces across multiple sessions
• leakage of KAB , a or b allows decryption of all past cryptograms
• wish for forward secrecy: leakage of KAB , a or b not a�ecting

past cryptograms
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Di�e-Hellman key exchange with forward secrecy

I Consider unilateral case where Bob does not validate Alice's key
• Alice can generate fresh keypair (a,A) for each session/message
• this is called an ephemeral key pair
• leaking KAB or a only a�ects single session/message
• leaking b still a�ects all communication between Alice and Bob

I Dynamic Di�e-Hellman
• Alice generates ephemeral key pair (a,A) per session
• Bob generates ephemeral key pair (b,B) per session
• auth. of A: Alice signs (Alice,A,N) with long term PrKA

• Bob veri�es Alice's signature using the validated PKA

• in mutual authentication: also vice versa
• now leakage of KAB , a or b only a�ects a single session
• after the session Alice deletes KAB and a, Bob deletes KAB and b
• this o�ers forward secrecy

I Ephemeral key pairs in RSA would work too but very expensive
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Di�e-Hellman explained via mixing of colours

(source: Wikipedia)
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Di�e-Hellman in action: e-passports

I We saw the Basic Access Control (BAC) protocol for e-passports
• terminal access to passport chip via Machine Readable Zone

(MRZ)
• restricted to less sensitive data, also on the passport paper

I There is also an Extended Access Control (EAC) protocol
• for the more sensitive biometric date, like �ngerprints

(EAC is done after BAC)

• introduced later (since 2006) by German BSI
• involves two subprotocols

I Chip Authentication (CA), using ephemeral Di�e-Hellman
I Terminal Authentication (TA), using certi�cates: for giving

access to biometric data
• Here we sketch how CA works
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Chip Authentication (from EAC)

PsP
g sp

(sp is static DH key)
// Rdr

PsP Rdr
g sR

(sR is ephemeral DH key)
oo

K = g sP sR :fresh shared secret;
derived to two keys: Kenc,Kmac

PsP
Kmac{g sR}

// Rdr

Rdr now authenticated PsP as it knows
I PsP must have shared secret K
I so PsP has private key sP matching the public key g sP
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NSA breaking encrypted connections

CCS 2015 paper Imperfect Forward Secrecy: How Di�e-Hellman Fails in
Practice explains:
I Di�e-Hellman is used for VPNs, https websites, email, etc.
I Many implementation use the same domain parameters
• a 1024 bit prime p
• a particular generator g ∈ Zp

I A very large look-up table can be compiled
• to e�ciently solve discrete log in this group
• authors estimate that this could be done for $100M
• NSA may have budget for that

I This could explain suggestions in Snowden documents that the NSA
has access to encrypted connections.

Page 113 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Discrete-log based cryptography Di�e-Hellman key exchange



Student feedback after exam in 2012

Page 114 of 140 Jacobs and Daemen Version: fall 2016 Computer Security
Discrete-log based cryptography Di�e-Hellman key exchange



El Gamal: discrete-log based encryption

Encryption with public key A
I convert cleartext M to element m ∈ 〈g〉
I randomly generate ephemeral key pair (r ,R = g r )
I de�ne cryptogram as {m}A =

(
R, m · Ar

)
I multiplying m with random Ar and giving R as side info
Decryption with private key a
I Assume ciphertext c = (c1, c2), with ci ∈ 〈g〉
I de�ne recovered plaintext as [(c1, c2)]a =

c2
(c1)a

I removing the factor Ar by dividing by Ra = Ar

Correctness

I For A = g a we get:

[{m}A]a = [R,m · (g a)r ]a =
m · g a·r

(g r )a
=

m · g a·r

g a·r = m
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El Gamal style signature (AKA DSA)

Signing with private key a of message m
I randomly generate ephemeral key pair (r ,R = g r ) with

gcd(r ,#g) = 1

signa(m) =
(
R,

h(m)− a · R
r

mod#g
)

Veri�cation of m, (s1, s2) with public key A ∈ 〈g〉
I check the equation:

gh(m) ??
=

(
s1
)s2 · As1

�



�
	Notice: no decryp-

tion, just checking

Correctness

I r · s2 ≡ h(m)− a · R = h(m)− a · s1mod#g so that:
I h(m) ≡ r · s2 + a · s1 (mod #g) and so:
I gh(m) = g r ·s2+a·s1 =

(
g r
)s2 · (g a

)s1 = Rs2 ·
(
g a
)s1 = (s1)s2 · As1
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Example calculation I

Take G = Zp for p = 107 and g = 10 ∈ G with order q = 53.
I Keys: private x = 16; public y = g x = 1016 = 69mod 107
I Encryption: of m = 100 ∈ G with random r = 42 gives:

(g r , y r ·m) = (1042, 6942 · 100) = (4, 11)

I Decryption: of (4, 11) is 11
4x

• 4x = 416 = 29 and 1
29

= 48mod 107

• Hence 11
4x

= 11 · 48 = 100mod 107

(For modular calculation use eg: http://ptrow.com/perl/calculator.pl)
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Example calculation II

Still with the same p = 107, g = 10, q = 53, x = 16, y = 69,
I Sign: H(m) = 100 with random r = 33
• We have g r = 1033 = 102mod 107
• and: 1

r = 1
33

= 45mod 53
• next:

H(m)− x · g r

r
= (100− 16 · 102) · 45 = 5 · 45 = 13mod 53

• The signature is thus: (102, 13).

I Veri�cation: of (s1, s2) = (102, 13)
• �rst, gH(m) = 10100 = 34mod 107
• and also: (s1)

s2 · y s1 = 10213 · 69102 = 62 · 4 = 34mod 107.
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Background, for mathematicians only

I The primes p = 107 and q = 53 in the example satisfy p = 2q + 1
I We said we use G = Zp, but actually it's G = Z∗p
I The order of Z∗p is p − 1 = 2q
I In general, if g ∈ G is of order q, then it corresponds to a subgroup

of G of order q, generated by g i ∈ G
• If this subgroup is of prime order q, then the �Decisional

Di�e-Helmann� assumption is believed to hold
I Formally, we have an embedding of groups:

Zq −→ Z∗p = G given by i 7−→ g i

Zq is identi�ed with the subgroup 〈g〉 generated by G .
• these exponents i have to computed modulo q
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Background on Elliptic Curve Cryptography

I Koblitz and Miller proposed the use of elliptic curves for
cryptography in the mid 1980's
• group operation is given by addition of points on a curve
• mainstream public key crypto nowadays

I Provides the functionality of RSA and more
• smaller keys
• pairings (advanced, cool topic)

I Standard public key cryptography for embedded platforms (smart
cards, e.g., e-passport, sensors, etc.)

I Key lengths (in bits) for comparable strength (source: NIST):

security modulus length
strength RSA ECC

80 1024 160
128 3072 256
256 15360 512
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Addition on an elliptic curve over the real numbers

Elliptic curves are given by equations such as: y2 = x3 + ax + b

Addition P + Q = R and P ′ + P ′ = 2 · P ′ = R ′ is given by:

There are also explicit formulas for such additions.
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Example curve: y 2 = x3 + 2x + 6 over �nite �eld Z37
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Repeated addition: n · P goes everywhere
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Given Q = n · G , �nding n involves basically trying all options
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Discrete Log and public keys for ECC

ECC uses additive notation so discrete log problem looks a bit funny:

scalar multiplication: [n] · G = G + · · ·+ G
Given [n] · G and G , it is hard to �nd the scalar n.

Key pairs in ECC:
I Domain parameters: the prime p, the constants a and b, generator

G and its order #G
I Private key: an integer a ∈ Z#G

I Public key: a point on the curve A = [n]G
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On PGP

Use fresh session key K for e�ciency:

A −→ B : {K}eB , K{m, [h(m)]dA}

This is basically what PGP (= Pretty Good Privacy) does, e.g., for
securing email. It is e�cient, because m may be large.
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Needham-Schroeder two-way authentication

I Originally proposed in 1978
I uses RSA encryption to achieve authentication
I Serious �aw discovered only in 1996 by Gavin Lowe
• required formal methods, namely model checking

I Can simply be �xed
I Fix can be seen as just applying appropriate domain separation
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Needham-Schroeder: original version + attack

Protocol Attack

A −→ B : {A,NA}eB
B −→ A : {NA,NB}eA
A −→ B : {NB}eB

A −→ T : {A,NA}eT
T −→ B : {A,NA}eB
B −→ T : {NA,NB}eA

T −→ A : {NA,NB}eA
A −→ T : {NB}eT
T −→ B : {NB}eB

Interpretation of the attack

If A is so silly to start an authentication with an untrusted T (who can
intercept), this T can make someone else, namely B, think he is talking
to A while he is talking to T .
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Needham-Schroeder: a �x

A −→ B : {A,NA}eB
B −→ A : {NA,B,NB}eA
A −→ B : {NB}eB
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Signature variations

I Both sign and encrypt:

A −→ B : {m, [h(m)]dA}eB
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Blind signatures: what is the point?

I Suppose A wants B to sign a message m, where B does not know
that he signs m
• Compare: putting an ordinary signature via a carbon paper

I Why would B do such a thing?
• for anonymous �tickets�, e.g., in voting or payment
• the private key may be related to a speci�c (timely) purpose
• hence B does have some control

I Blind signature were introduced in the earlier 80s by David Chaum
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Blind signatures with RSA

Let (n, e) be the public key of B, with private key (n, d).

(1) A wants to get a blind signature on m; she generates a random r ,
computes m′ = (r e) ·mmod n, and gives m′ to B.

(2) B signs m′, giving the result k = [m′](n,d) = (m′)d mod n to A

(3) A computes:

k

r
=

(m′)d

r
=

(r e ·m)d

r
=

r ed ·md

r
≡ r ·md

r
= md = [m](n,d)

Thus: B signed m without seeing it!
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Blind signatures for e-voting tickets

I Important requirements in voting are (among others)
• vote secrecy
• only eligible voters are allowed to vote (and do so only once)

I There is a clear tension between these two points
I Usually, there are two separate phases:

(1) checking the identity of voters, and marking them on a list
(2) anonymous voting

I After step 1, voters get a non-identifying (authentic, signed) ticket,
with which they can vote

I Blind signatures can be used for this passage from the �rst to the
second phase
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Blind signatures for untraceable e-cash

Assume bank B has key pairs (ex , dx) for coins with value x

C ←→ B : authentication steps
C −→ B : �I wish to withdraw e15, as a e5 and a e10 coin�
C −→ B : r e51 · h(c1), r

e10
2 · h(c2) (with ri , ci random)

B −→ C :
(
r e51 · h(c1)

)d5 = r1 · h(c1)d5 ,
(
r e102 · h(c2)

)d10 = r2 · h(c2)d10

As a result

I C can spend signed coins (c1, h(c1)
d5 , 5); value is checkable

I the bank cannot recognise these coins: this cash is untraceable
I double spending still has to be prevented

(either via a database of spent coins, or via more crypto)

Authorities don't want such untraceable cash, because they are afraid of
black markets and losing control (see Bitcoin, later on)
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Public key generation

// standard lengths:512,1024,1536,2048,3072

int RSAlength = 1024;

KeyPairGenerator kpg =

KeyPairGenerator.getInstance("RSA");

kpg.initialize(RSAlength);

// may take some time for big lengths

KeyPair kp = kpg.generateKeyPair();
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Extracting public key info from a Java keypair

RSAPublicKey pubkey =

(RSAPublicKey)kp.getPublic();

BigInteger

n = pubkey.getModulus(),

e = pubkey.getPublicExponent();
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Extracting private key info from a Java keypair

RSAPrivateCrtKey privkey =

(RSAPrivateCrtKey)kp.getPrivate();

BigInteger

p = privkey.getPrimeP(),

q = privkey.getPrimeQ(),

d = privkey.getPrivateExponent(),

phi = p.subtract(

BigInteger.ONE).multiply(

q.subtract(BigInteger.ONE));
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RSA encryption & decryption

Cipher rsaCipher =

Cipher.getInstance("RSA/ECB/PKCS1Padding");

rsaCipher.init(Cipher.ENCRYPT_MODE, pubkey);

byte[] cleartext = ...

// encipher

byte[] ciphertext =

rsaCipher.doFinal(cleartext);

// decipher

rsaCipher.init(Cipher.DECRYPT_MODE, privkey);

byte[] decipher =

rsaCipher.doFinal(ciphertext);
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RSA encryption & decryption �by hand�

BigInteger message = ...

BigInteger enc = message.modPow(e, n);

BigInteger dec = enc.modPow(d, n);
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