
Security
Assignment 7, Friday, October 21, 2016

Handing in your answers: For the full story, see

http://www.sos.cs.ru.nl/applications/courses/security2016/exercises.html

To summarize:

• Include your name and student number in the document (they will be printed!), as well as
the name of your teaching assistant (Hans or Joost). When working together, include both
your names and student numbers.

• Submit one single pdf file – when working together, only hand in once.

• Hand in via Blackboard, before the deadline.

Deadline: Monday, November 14, 09:00 sharp!

Goals: After completing these exercises successfully you should be able to

• reason about practical applications of hash functions.

Marks: You can score a total of 100 points.

1. (30 points) The following authentication protocol makes use of the Lamport hash construc-
tion (sometimes simply called ‘hash chain’). The construction simply consists of repeatedly
applying a hash function to an input value. We write hn(x) to denote hashing x n times,
e.g. h3(x) = h(h(h(x))). Each user chooses a password pw and hashes this n times. He/she
then sends it to the server. Let us assume that initially, n = 10 000. The server then stores
a tuple (user, n, Y = hn(pw)) for each user in a database. Users can now authenticate to
the server using the following protocol:

1. A −→ S : A
2. S −→ A : n
3. A −→ S : X = hn−1(pw)

The server checks if h(X) = Y , then decrements n and sets Y := X. So, after a successful
run of this protocol the server holds a new tuple (user, n− 1, Y = hn−1(pw)).

(a) Can you think of an attack (here, relay or simple man-in-the-middle is not considered
an attack), after which the adversary can gain access multiple times without the user
being present? Use the arrow notation (A −→ B : message) in your explanation.

(b) At some point n = 0. Is it safe to start over again and put n back to 10 000? Briefly
explain your answer.

(c) One way to construct a one-time pad that uses a Lamport hash is by starting from the
hash of a random starting value r and generating an infinite sequence of h(r), h(h(r)), . . ..
Is this way to construct a one-time pad secure? Briefly motivate why, or describe an
attack. Hint: consider what happens when a part of the plaintext is predictable.

(d) Another way to construct a one-time pad using a Lamport hash is to ‘reverse’ the above
approach, to obtain h1000(r), h999(r), h998(r), . . . , h(r). (The length of the pad in this
case is 1000 times the output length of the hash function, after which a new random
value is chosen for a new pad.) What is the security problem with this construction?

http://www.sos.cs.ru.nl/applications/courses/security2016/exercises.html


2. (35 points) Small embedded devices typically do not have a lot of space available to do
complex computations. More importantly, they should be cheap to produce. Still they need
to be able to communicate securely. In this exercise, we imagine a device that can only
compute a hash function (and basic operations such as XOR’s), but still wants to achieve
confidentiality and integrity. Assume we share a key k with the device, and we have a hash
function H that outputs 256-bit hashes.

Assume all messages are 512 bits. To encrypt, we first split a message in two parts of 256
bits: m = m1‖m2 (as always, ‖ is concatenation). We compute the encrypted message
k{m} = c1‖c2 in two parts, as follows:

c1 = H(k‖m2)⊕m1 and c2 = m2 ⊕H(c1‖k).

(a) Assuming you have the key k, how do you obtain m from k{m} = c1‖c2? Show what
computations need to be done.

To guarantee integrity, we compute a MAC over the ciphertext. As we only have a hash
function, we use a variant of the so-called HMAC construction1: we compute two tags
t1 = H(k‖c1) and t2 = H(k‖c2).

(b) Explain what property of the hash function2 is most important for this HMAC con-
struction to prevent outsiders from creating valid tag-ciphertext pairs (i.e. some (t′, c′))
without having the key.

Assume that later, by coincidence, we send a message m′ for which it holds that m′2 = c2,
for some c2 from an earlier message.

(c) Somehow an adversary finds out that this has happened. Of course, they have been
recording everything that has ever been sent. What other (part of a) message can they
now recover?

(d) Is this still a problem if we use only one tag t = H(k‖c1‖c2) instead of a separate t1
and t2? Why (not)?

3. (35 points) Hash functions play an important role in the BitTorrent protocol. When using
BitTorrent, users receive pieces of a large file from different providers (typically referred to
as ‘seeders’). When a user wants to obtain a certain file, he needs a ‘.torrent’ file. Amongst
other things, this file can contain a list of hashes. These hashes are used to guarantee the
integrity of the individual pieces, allowing a user to check each piece when he receives it.

(a) An attacker tries to replace one piece of the original piece with a new one. What
property of the hash function is important here so that the attack is detectable?

(b) Say Alice wants to download a file of 2 GB (e.g. an authentic Linux distribution), and
it is split in pieces of 16 KB each. Suppose that the .torrent file she uses contains a list
of SHA-1 hashes. What is the minimum size of that .torrent file? (Hint: A SHA-1 hash
is 160 bits = 20 bytes)

As (b) shows, that can be quite a large file to deal with. We could resolve this by increasing
the size of each piece so that we do not need as many hashes. That would however make
it more difficult for peers to quickly share their pieces. An alternative approach is to use
binary hash trees.

Consider Figure 1. On the circles along the bottom (the leaf nodes), we place the hash
values of the different pieces: N0

0 = h(piece0), N0
1 = h(piece1), N0

2 = h(piece2), . . .. Each of
the higher nodes in the tree contains the combined hash of its children. For example, the

1Note that we use a simplified construction here: it is not secure when used with certain popular hash functions.
2Preimage resistance (P), 2nd preimage resistance (P2) or collision resistance (C)



value in the first node of the next layer would be N1
0 = h(N0

0 ‖N0
1 ) = h(h(piece0)‖h(piece1)).

The node above that would be N2
0 = h(N1

0 ‖N1
1 ), etc. We continue doing this all the way to

the top of the tree. The top of the tree is called the root R, which is always contained in
the .torrent file.

R

N0
4

N2
0

N1
1

N0
3N0

2

N1
0

N0
1N0

0

Figure 1: binary hash tree

(c) Suppose the .torrent file does not contain a list of all hashes, but only the root hash.
At which stage would you be able to check the integrity of the pieces you receive from
others? Why?

Instead of just sending you the piece, a seeder should now also send you a few of the nodes
in the tree. This guarantees that you have enough information to calculate the root node,
using his piece and the hashes he sends along. You can then compare it to the root node in
the ‘.torrent’ file. If it matches, the piece was authentic!

R

N2
1

N1
3

N0
7N0

6

N1
2

N0
5N0

4

N2
0

N1
1

N0
3N0

2

N1
0

N0
1N0

0

Figure 2: binary hash tree with a marked leaf node

(d) Suppose someone sends you piece4. Now you can compute N0
4 = h(piece4), marked

gray in Figure 2. Looking at the figure, what other N -values (nodes) would he need to
send you before you can compute R, to check if the piece was correct?

(e) Suppose we have a file that consists of 1024 pieces. How many hashes would need to
be sent along with each of the pieces?

This exercise was only a very slight abstraction from reality. Have a look at http://bitt

orrent.org/beps/bep_0030.html if you are interested in what this looks like in practice.

http://bittorrent.org/beps/bep_0030.html
http://bittorrent.org/beps/bep_0030.html

