

Security

Assignment 13, Friday, December 16, 2016

Handing in your answers: For the full story, see

<http://www.sos.cs.ru.nl/applications/courses/security2016/exercises.html>

To summarize:

- Include your name and student number **in** the document (they will be printed!), as well as the name of your teaching assistant (Hans or Joost). When working together, include **both** your names and student numbers.
- Submit one single **pdf** file – when working together, only hand in **once**.
- Hand in via Blackboard, before the deadline.

Deadline: Monday, January 9, 09:00 sharp!

Goals: After completing these exercises successfully you should be able to

- perform computations of a Diffie–Hellman key exchange
- recognize the shortcomings of the Diffie–Hellman key exchange;
- perform computations for ElGamal encryption/decryption/signatures;
- understand the dangers involved in reusing randomness.

Marks: You can score a total of 100 points.

1. **(25 points)** The Diffie–Hellman (DH) key exchange is used to agree on a secret key between Alice and Bob. The prime $p = 1021$ determines the group $\mathbb{Z}_p^* = \{1, \dots, p-1\}$ in which all operations are performed (i.e. all computations are performed modulo 1021).

The following messages are exchanged:

1. $A \rightarrow B$: $p = 1021, g = 10, g^a = 93$
2. $B \rightarrow A$: $g^b = 491$

- (a) Given Alice's secret $a = 317$, compute the shared secret key. Show how you came to the solution.
- (b) Since the modulus is very small, one can compute the secret values. Derive Bob's secret from the exchanged messages. Feel free to use a calculator¹ or you can write a small program. In any case, explain your steps.
- (c) Check that Bob has the same (shared) key as Alice using the private key from (b) (by doing the DH-computation for Bob's side).
- (d) We describe a modified communication when there is a middle-man. Assume that message 1. $A \rightarrow B$ is as showed above, but Eve captures the message and picks two random values: $r_A = 37, r_B = 404$. She uses these random values for the communication with Alice and Bob, respectively.
 - i. Show the *four messages*: $A \rightarrow E(B), E(A) \rightarrow B, B \rightarrow E(A), E(B) \rightarrow A$. Use the protocol notation as used earlier in this course.
 - ii. Compute the *established keys* K_{AE}, K_{BE} between Alice and Eve, and between Eve and Bob, respectively.

¹e.g. <https://www.wolframalpha.com>

2. **(30 points)** Consider the ElGamal public-key encryption system. For $p = 31$, $G = \mathbb{Z}_p^*$ is a multiplicative cyclic group with generator $g = 3$. Suppose that the secret number in the system is $a = 17$. You will encrypt messages and decrypt ciphertexts in this group. Describe your computations.

- (a) Determine the corresponding value $A = g^a \in G$.
- (b) We are going to encrypt the message “remember” (in ECB mode) using ElGamal. To map letters to integers we use the mapping $a \mapsto 1, b \mapsto 2, \dots, z \mapsto 26$. For the following steps, fill in each row in the table below, and explain the required computations:
 - i. For each integer block, calculate a separate ephemeral public key A^r using the following values for r : 3, 6, 9, 12, 15, 18, 21 and 24.
 - ii. For each integer block, calculate the first component $c_1 = R = g^r$ of the ciphertext using that same sequence for r .
 - iii. Finally, for each integer block, calculate the second component $c_2 = m \cdot A^r$ of the ciphertext.
- (c) Let’s now decrypt the ciphertext; complete the table below
 - i. For each integer block calculate the inverse of the ephemeral public key $(A^r)^{-1} = c_1^{-a}$. (Note: c_1^{-a} can be calculated as c_1^{p-1-a} , using Euler’s Theorem and the fact that $\phi(p) = p - 1$).
 - ii. For each integer block, use the inverse $(A^r)^{-1}$ to cancel out A^r in c_2 and thus retrieve $m = c_2 \cdot A^{-r}$.

	r	e	m	e	m	b	e	r
Encryption								
Mapping	18	5
r	3	6	9	12	15	18	21	24
A^r
$c_1 = g^r$
$c_2 = m \cdot A^r$
Decryption of ciphertext (c_1, c_2)								
$(A^r)^{-1} = c_1^{-a}$
$m = c_2 \cdot A^{-r}$

3. **(30 points)** The ElGamal signature scheme.

Suppose $G = \mathbb{Z}_p^*$ for $p = 29$, with generator $g = 3$. For the order of G , we write $\#g = \phi(p)$. In this exercise we will use the (otherwise completely insecure) hash function $h(m) = m$. Let’s assume that Alice’s secret key is $a = 21$. Please make sure to use the correct modulus for each step.

- (a) Determine Alice’s corresponding public key A .
- (b) Sign the message $m = 15$ using ElGamal signatures with random value $r = 5$.
 - i. Verify that r and $\#g$ are relatively prime.
 - ii. Compute $s_1 = R = g^r \bmod p$.
 - iii. Compute $r^{-1} \bmod \#g$.
 - iv. Compute $s_2 = (h(m) - a \cdot R) \cdot r^{-1} \bmod \#g$
- (c) Verify that the signature (s_1, s_2) is correct on message m using Alice’s public key A .
 - i. Check that $1 \leq s_1 < p$.
 - ii. Compute $v := s_1^{s_2} \cdot A^{s_1} \bmod p$.

iii. Verify $g^{h(m)} \stackrel{?}{=} v$.

4. **(15 points)** Predictable randomness.

When using the ElGamal scheme, it is crucial that one uses a fresh random number r for each use. However, true random numbers are not that easy to obtain - in practice, they are typically generated *pseudo*-randomly, and sometimes this is done poorly. When this is done in an insecure fashion, an attacker could influence the randomness, cause a system to use the same ‘random’ value twice or even predict the randomness completely.

- (a) Consider ElGamal encryption (let $G = \mathbb{Z}_p$ for some prime p). What can an attacker learn if the randomness r is known, and he intercepts an ElGamal ciphertext? Show how!
- (b) Now consider ElGamal signatures. Show what an attacker can learn when the randomness r is known, and he obtains an ElGamal signature (s_1, s_2) (with the corresponding message m). Again, show how!
- (c) Which of these scenarios has more devastating consequences? For example, consider the security of other ciphertexts and signatures for which the used randomness r' is still unknown.