

Security

Assignment 11, Friday, December 2, 2016

Handing in your answers: For the full story, see

<http://www.sos.cs.ru.nl/applications/courses/security2016/exercises.html>

To summarize:

- Include your name and student number **in** the document (they will be printed!), as well as the name of your teaching assistant (Hans or Joost). When working together, include **both** your names and student numbers.
- Submit one single **pdf** file – when working together, only hand in **once**.
- Hand in via Blackboard, before the deadline.

Deadline: Monday, December 12, 09:00 sharp!

Goals: After completing these exercises successfully you should be able to

- notice the risks of shared RSA moduli;
- analyse relations among certificate within a certificate chain;
- keep a structured overview while performing larger computations

Marks: You can score a total of 100 points.

1. **(20 points)** We assume that Alice and Bob use RSA public keys with the same modulus n but with different public exponents e_A and e_B . We further assume that Alice and Bob still have their p and q such that $p \cdot q = n$.
 - (a) Show that Alice can decrypt messages sent to Bob. (*Hint:* How can Alice calculate d_B ?)
 - (b) Assume that $\gcd(e_A, e_B) = 1$. This implies that Eve can apply Extended Euclidean gcd algorithm to find integers x and y such that $x \cdot e_A + y \cdot e_B = \gcd(e_A, e_B) = 1$. Now if the message m was sent encrypted as c_A to Alice and as c_B to Bob, how can Eve obtain this message m from $c_A^x \pmod{n}$ and $c_B^y \pmod{n}$? Show the steps clearly.
2. **(20 points)** Let C_X^Y be (ad hoc) notation for a public-key certificate¹ of X , signed by Y . Consider a system that consists of the agents P, Q, R, S and only the following three certificates

$$C_Q^P, \quad C_R^P, \quad C_S^R.$$

Assume further that everybody knows his own key pair and also P 's public key.

Explain briefly which certificates (and thus: which public keys) are needed by both agents S and Q in order to securely perform the following tasks.

- (a) S sends a confidential message to Q .
- (b) S sends a signed message to Q , and Q verifies this message.

¹In this exercise, a certificate C_X^Y simply contains the public key of X and the signature of Y on it. For a more detailed discussion, see Wikipedia: http://en.wikipedia.org/wiki/Public_key_certificate

3. **(60 points)** Asymmetric cryptography is not used to encrypt the actual text in the message directly; instead, it is used to encrypt something that can be used to derive a symmetric key, which is in turn used to encrypt the actual text. In one of the past lectures, RSA-KEM was explained (see slide 57 for a description). In this exercise, we will use this to look at a somewhat more realistic scenario than we have seen so far.

Imagine Alice and Bob are using RSA-KEM, and we have intercepted the random value r , encrypted with the following RSA public key (n, e) :

```
n = 9021409837217503169994652443094898049733
e = 65537
```

The RSA-encryption of the random value r is:

```
8972163497987314734169999025202261871445
```

The session key is a 128-bit AES key. It is derived by taking the first 128 bits of output from $\text{SHAKE128}(r)$. AES is a standard block cipher² - for this exercise, that is all you need to know about it. AES was used in CBC-mode³, to produce the following ciphertext:

```
4A 20 EF EE 84 F3 85 BD 00 2D 5B DF 3F 2B F0 C2
9B F0 B3 18 74 6A 08 78 96 13 3D CE D9 17 B7 4F
69 5A 8F 72 B2 71 59 36 EC D5 E7 55 54 3C C3 BB
```

The following IV was used:

```
55 BB 82 09 2A 18 AA A9 EF 68 0A 6C 2C 94 8F 00
```

The plaintext is a string encoded using ASCII-encoding. Find the plaintext.

To help you do this, we have set up the following web pages that enables you to do AES encryption/decryption, SHAKE128, as well as XOR operations on large values:

- <http://www.sos.cs.ru.nl/applications/courses/security2016/aes/>
- <http://www.sos.cs.ru.nl/applications/courses/security2016/shake128/>
- <http://www.sos.cs.ru.nl/applications/courses/security2016/xor/>

Note that such tools typically require you to convert your input into base-16 (i.e. hexadecimal notation).

Furthermore, it will be helpful to use tools like Wolfram Alpha⁴ to help you with the computations, or self-written code. Make sure that whatever you use is able to support large integers.

First, write down your strategy in steps, using terms such as RSA, ϕ , factoring, d , CBC, IV, block, XOR, decrypt, encrypt, decode, etc. Be as specific as possible. Second, perform each step and make the computation explicit: what tool did you use, and how? What was your input, and what was the result? **Write down your intermediate steps and results!** This will also make it easier to stay organized while solving this exercise.

Hint: especially for the first step, think like an attacker – everything is allowed!

²https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

³https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

⁴<http://www.wolframalpha.com>