

Security

Assignment 13, Wednesday, December 16, 2015

Handing in your answers: For the full story, see

<http://www.sos.cs.ru.nl/applications/courses/security2015/exercises.html>

Briefly,

- submission via Blackboard (<http://blackboard.ru.nl>);
- one single pdf file;
- make sure to write all names and student numbers and the name of your teaching assistant (Brinda or Joost).

Deadline: Thursday, January 7, 23:59 (midnight) sharp!

Goals: This assignment repeats and reinforces concepts and techniques from this course. After completing these exercises successfully, you should

- be able to perform necessary computations of a Diffie–Hellman key exchange;
- recognise the main weakness of the Diffie–Hellman key exchange;
- be able to perform necessary computations for ElGamal encryption/decryption.

Marks: You can score a total of 100 points.

1. **(40 points)** Diffie–Hellman (DH) key exchange is used to agree on a secret key between Alice and Bob. The prime $p = 1021$ determines the group $\mathbb{Z}_p^* = \{1, \dots, p-1\}$ in which all operations are performed (i.e. all computations are performed modulo 1021).

The following messages are exchanged:

1. $A \rightarrow B$: $p = 1021, g = 10, g^a = 93$
2. $B \rightarrow A$: $g^b = 491$

- (a) Given Alice's secret $a = 317$, compute the shared secret key. (You can use a computer, but do explain what exactly you compute.)
- (b) Since the modulus is very small, one can compute the secret values. Derive Bob's secret from the exchanged messages. You have two options:
 - Use a script/program. Give the source code, and explain what it does.
 - Do it by hand¹. Explain how you did it.
- (c) Check that Bob has the same (shared) key as Alice using the private key from (b) (by doing the DH-computation for Bob's side).
- (d) We describe a modified communication when there is a middle-man. Assume that message 1. $A \rightarrow B$ is as showed above, but Eve captures the message and picks two random values: $r_A = 37, r_B = 404$. She uses these random values for the communication with Alice and Bob, respectively.
 - i. Show the *four messages*: $A \rightarrow E(B), E(A) \rightarrow B, B \rightarrow E(A), E(B) \rightarrow A$.
 - ii. Compute the *established keys* K_{AE}, K_{BE} between Alice and Eve, and between Eve and Bob, respectively.

¹Feel free to use a calculator on your PC (like `bc` for linux) or online (like the Magma Calculator <http://magma.maths.usyd.edu.au/calc/>, syntax: `x^y mod z`), to help you with the calculations.

2. **(60 points)** Consider the ElGamal public-key encryption system, see Wikipedia². For $p = 31$, $G = \mathbb{Z}_p^*$ is a multiplicative cyclic group with generator $g = 3$. Suppose that the secret number in the system is $x = 17$. You will encrypt messages and decrypt ciphertexts in this group.

Please make sure that you describe how the computations are carried out; you do not need to write down all steps here (unless otherwise required).

- (a) Determine the corresponding value $y = g^x \in G$.
- (b) We are going to encrypt the message “remember” (in ECB mode) using ElGamal. To map letters to integers we use the mapping $a \mapsto 1, b \mapsto 2, \dots, z \mapsto 26$. For the following steps, fill in each row in Table 1 and explain the required computations:
 - i. For each integer block calculate a separate session key $s = y^r$ with a temporary value r : 3, 6, 9, 12, 15, 18, 21 and 24.
 - ii. For each integer block calculate the first component $c_1 = g^r$ of the ciphertext using that same sequence.
 - iii. Finally, for each integer block calculate the second component $c_2 = m \cdot s$ of the ciphertext.
- (c) Let’s now decrypt the ciphertext; complete Table 1.
 - i. For each integer block calculate the inverse session key $s^{-1} = c_1^{-x}$, where c_1^{-x} can be calculated as c_1^{p-1-x} . (Remark: This is true because $\varphi(p) = p - 1$ and, by Euler’s theorem, $a^{\varphi(n)} \equiv 1 \pmod{n}$ for any integer n . So, $c_1^{p-1-x} \equiv c_1^{p-1} \cdot c_1^{-x} \equiv 1 \cdot c_1^{-x} \equiv c_1^{-x} \pmod{p}$.)
 - ii. For each integer block, use the inverse s^{-1} to cancel out s in c_2 and thus retrieve $m = c_2 \cdot s^{-1}$. Show intermediate steps for the first three blocks.

	r	e	m	e	m	b	e	r
Encryption								
Mapping	18	5
r	3	6	9	12	15	18	21	24
$s = y^r$
$c_1 = g^r$
$c_2 = m \cdot s$
Decryption of ciphertext (c_1, c_2)								
$s^{-1} = c_1^{-x}$
$m = c_2 \cdot s^{-1}$

Table 1: Encryption and decryption with ElGamal

²http://en.wikipedia.org/wiki/ElGamal_encryption