

Security

Assignment 12, Thursday 18 December, 2008

Goals: After successfully completing this exercise you should have a working grasp of the elementary number theory that are used in cryptography.

Deadline: Friday January 9 or earlier. You have to send your answers to **Olha**, by e-mail or to the post-box. **Attention: Flavio is in ARGENTINA. He tells that he is not reachable by e-mail or any other way.**

1. (2 points) *Prime divisors and greatest common divisor ($\gcd(x, y)$).*
 - The prime-divisor factorisation of 24 is $2^3 \times 3$. Find the factorisation of 30, then find $\gcd(24, 30)$, and then factorise $\gcd(24, 30)$.
 - Factorise 15 and 8. Find $\gcd(15, 8)$, and then factorise it in terms of the prime divisors 2, 3 and 5. You may use zero-degrees: $2^0, 3^0, 5^0$.
 - Let $x = p_1^{n_1} \times \dots \times p_k^{n_k}$ and $y = p_1^{m_1} \times \dots \times p_k^{m_k}$ be factorisations of x and y respectively, where some of n_i or m_j may be 0. What is the factorisation of $\gcd(x, y)$?
2. (1 point) *Euler totient function ϕ .*
 - Name the elements of the set $\{1, \dots, 5\}$ that are relatively prime to 5. What is $\phi(5)$?
 - Name the elements of the set $\{1, \dots, 9\}$ that are relatively prime to 9. What is $\phi(9)$?
3. (2 points) Let $a \in \mathbb{Z}_n$. The *multiplicative inverse* x of the number a is such that $ax \equiv 1 \pmod{n}$ holds.
 - Why can you look for x using the formula $x = \frac{nk+1}{a}$, for some $k = 0, 1, 2, \dots$?
 - Find x such that $7x \equiv 1 \pmod{8}$ holds.
 - Let $a = n - 1$. Find x such that $(n - 1)x \equiv 1 \pmod{n}$. Explain your answer.
4. (3 points) *Multiplicative groups.*
 - Look at the multiplication table for \mathbb{Z}_{15}^* (Lecture 13 of Aspinall). Find the order of each element.
 - Create the multiplication table for \mathbb{Z}_6^* . What are the orders of its elements? Is this group cyclic or not (and why)? If "yes", what are the generators?
5. (2 points) *Chinese Remainder Theorem.*
 - Show that for co-prime n and m the map $\varphi : \mathbb{Z}_{nm} \rightarrow \mathbb{Z}_n \times \mathbb{Z}_m$, where

$$\varphi(x) = (x \pmod{n}, x \pmod{m})$$

is a bijection. Hint: you have to show that φ is everywhere defined (trivially by the definition), functional (that is for any x there is only one image; trivially by the def.), injective and surjective.

- Let $n = 15$ and $m = 4$. Find the φ -preimage of $(7, 2)$ in \mathbb{Z}_{60} , that is such $x \in \mathbb{Z}_{60}$ that $\varphi(x) = (7, 2)$.