
Making the Best of Mifare Classic

Update

Wouter Teepe
w.teepe@cs.ru.nl

Radboud University Nijmegen
December 11, 2008

Abstract

What would you do if you would be instructed to make a secure ap-
plication built on the Mifare Classic? Arguably, due to the vulnerabilities
shown in [5] and hinted at on [6], this is rather difficult and it may be
easier to use to another chip. This document explores what the best is
you can get, if the only option is Mifare Classic. We propose countermea-
sures against state restoration and against cloning. The effectiveness of
these countermeasures depends on the absense of other vulnerabilities of
the Mifare Classic.

1 Introduction

In [5], it is shown that the proprietary cryptography used on the Mifare Classic
RFID chip is severely flawed. The management summary would be something
like “Mifare Classic is broken”. And in fact, none of the authors would probably
strongly recommend using the Mifare Classic while alternatives are available.
The scientific summary would however be something like “Mifare Classic ad-
heres to a different, weaker, security model”. Arguably, this is a euphemism,
but technically it is correct. The adjusted security model provides hardly any
security at all. But still, it is more than nothing at all.

Since the publication of the first version of this document, new vulnerabilities
have been found by Radboud University. These new results have been confirmed
by NXP [6]. Moreover, it turned out that a vulnerability claimed by Karsten
Nohl is not reproducible. This update of the original paper “Making the Best
of Mifare Classic” (October 6, 2008) reflects these discoveries.

There are two motivations for investigating the remaining security features.
One is academic, and one is practical.

Academically, one would like to answer the question what the absolute min-
imum requirement of an RFID card is to be able to use it for anything requiring
some level of security. It turns out, that the Mifare Classic, with an adjusted
security model due to [5] can still offer protection against cloning and state
restoration (reversing the state to one earlier recorded). Semantic security of
the data stored must be achieved by using cryptography external to the Mifare
Classic, such as AES.

1

Practically, there may be cases where for some reason or another, migration
from Mifare Classic to another card is impossible, or infeasible on the short term.
For those situations, it is good to have insight in how the Mifare Classic, given
its vulnerabilities, can best be applied. This document provides suggestions for
that. However, in some cases it may turn out that the resources one must spend
to implement these suggestions might be better directed to replacing the Mifare
Classic card after all. In other cases, implementing these countermeasures may
buy sufficient time to prepare a card replacement in a later stage.

Moreover, it may be worthwhile to implement our countermeasures also on
the future replacement card. This would pre-emptively add extra layers of
security, which may turn out to be needed might the replacement card turn out
to have weaknesses as well at some point in the future. Thus, implementation of
our countermeasures where it is not strictly needed creates redundant security.

Many potential countermeasures can be identified. However, some counter-
measures can be considered “teasing the attacker”, in the sense that attacks are
not made impossible, but only slightly more cumbersome. This paper does not
focus on such countermeasures. On the other hand, we focus only on counter-
measures which fundamentally undercut the premises of successful attacks.

Our countermeasures go not without a strong disclaimer, however. Firstly,
we might have overlooked things. Peer review and feedback will hopefully ad-
dress that issue. If you find problems, please contact the author. Secondly,
the Mifare Classic card may turn out to have more vulnerabilities than those
published so far. In the light of additional vulnerabilities, the countermeasures
may not work anymore. Thirdly, we provide the countermeasures on an “as is”
basis and accept no liability for any damages resulting from using them.

In fact, some of the countermeasures published in the previous version of
this document are depreciated because new vulnerabilities of the Mifare Classic
rendered them useless. One countermeasure has been removed from this version,
and one is retained for reference purposes, but clearly marked as depreciated.

The results from [5] show that keys can be retrieved from genuine card
readers, and from intercepted communication between a card and a reader. For
one, this leaves the data on the card open for everyone to read. Keys which have
write rights leave the corresponding sectors of the card open to manipulation.

The recent discoveries, described at [6] and in Section 4, imply that any key
used on a Mifare Classic card can be retrieved from the card only, requiring no
interaction with legitimate card readers.

More fundamentally, one can identify two main classes of attacks resulting
from these vulnerabilities.

State restoration This is an attack where the attacker obtains a card, and
manipulates it to his advantage. The attacker reads the card state. Then
he uses the card, typically depleting the monetary value stored on the
card. When the card is depleted, the attacker writes back the original
card state, and restored the monetary value he just spent.

Cloning This is an attack where the attacker selects a “victim card”, and
makes functional copies of that card to his own advantage. The attacker
reads the card state of the victim card, and loads this state into a Mifare
Classic emulator. There is no limitation on how many clones the attacker
can make, except for the number of available emulators.

2

We propose countermeasures against the first class of attacks. Originally we
also had a countermeasure against cloning, but the recent discoveries rendered
the method ineffective. It is therefore omitted from this paper.

State restoration can be prevented by tying the card state with a cryp-
tographic signature to a monotonically decreasing counter on the card. This
requires some data infrastructure, key infrastructure and allocation schemes on
the card to make everything work. The Mifare Classic does not provide ACID
write transactions, which complicates this considerably.

Fundamental to the countermeasure is that we trade storage space and trans-
action time for improved security. We do not propose one-size-fits all counter-
measures, but explain in detail the many design choices one can make while
implementing the countermeasures. What the best choice is depends on the
particular properties of the application case at hand, and may be different from
case to case.

Note that even with these countermeasures, relay attacks remain possible.
This is not unique for the Mifare Classic: no currently available card is protected
against relay attacks.

This paper is organised as follows. Section 2 describes the specifics of the
Mifare Classic in sufficient detail to understand the countermeasures we pro-
pose. Section 3 describes our countermeasure against state restoration attacks.
Section 4 discusses in general terms what it takes to create a functional clone.
By that time, the reader will have read about a large number of keys and master
keys required to make everything work. In Section 5, a summary is given of all
the possible key that may be involved in our countermeasures. We end with
some concluding remarks and acknowledgements.

2 The Mifare Classic

2.1 Configuring

In this section it is explained what ways the Mifare Classic chip can be config-
ured. The main source is the documentation provided by NXP [7]. However,
the information has been reshuffled considerably and interpreted resulting in the
exposé given in this section. In particular Figure 1 and Table 2 have no direct
counterpart in the NXP documentation. In some cases, the documentation is
ambiguous and lab experiments were conducted to complete the picture. These
completions are marked and should be handled with care, as different hardware
revisions might handle those cases differently.

The explanation given in this Section also holds for chips and devices which
can emulate the Mifare Classic, such as the Mifare Plus1 and the SmartMX from
NXP, the “M”-labeled chips in the SLE66 series of Infineon, and the Proxmark3
programmed by Gerhard de Koning Gans. However, it may be that these em-
ulating chips and devices offer alternative means to access the memory on the
emulated chip. These alternative means are out of the scope of this section, but
have to be within scope when one builds a security architecture using such an
emulator.

In this section, only the publicly available documentation of the Mifare Clas-
sic is taken into account. There may be confidential information which changes

1Projected by NXP in Q4 2008.

3

sectors blocks memory slack space
name 64 b 256 b total free total free min max
mini 5 0 20 14 320 b 224 b 5 b 35 b
1K 16 0 64 47 1024 b 752 b 7 b 112 b
4K 32 8 256 215 4096 b 3440 b 40 b 280 b

Fudan 64 0 256 191 4096 b 3056 b 64 b 448 b

Table 1: Variants of the Mifare Classic

the proper interpretation. In particular, if a Mifare Classic chip can be restored
to factory settings using some undocumented feature, assessments that a chip
can be “frozen” into particular states do no longer hold.

On sectors and blocks The Mifare Classic chip is essentially a memory card.
One can store data on it, and later read out the data. The chip itself cannot
execute user-loadable programs, for example in the way that Java cards can.
However, the chip has some hardwired logic circuitry that can be configured
to regulate the access to the card. This section will explain the functional
possibilities of this circuitry and what configuration options exist.

There are several variants of the Mifare Classic chip, whose only essential
difference is the storage capacity. The memory of every Mifare Classic chip is
divided into a number of sectors, each of which can be configured independently.
A sector is the biggest unit of a chip that can be configured; a sector operates
independently from other sectors on the same chip. Therefore, in the rest of this
section we consider the individual sector of a Mifare Classic chip as the subject
of discourse.

Sectors on a single chip are numbered consecutively, starting at 0. Every
sector is divided into blocks of 16 bytes. Not all blocks can be used for storage
of arbitrary data. Of every sector, the last block, the sector trailer, is reserved
for configuring the sector. Moreover, the first block of the first sector, the man-
ufacturer block, of a chip is read-only and is initialised by the manufacturer.
It contains the hardware version number and the (globally unique) serial num-
ber of the chip. The number and sizes of the sectors differ per variant of the
chip. A summary is given in Table 1. The Fudan chip is an unlicensed clone
(“counterfeit”) produced by the China-based company Fudan Microelectronics
Co. Ltd.

The sector trailer is, as any block, 16 bytes long. The actual configuration
is stored redundantly in 3 bytes. The actual configuration space is 12 bits long;
these bits are called the access bits. Key A takes 6 bytes. Depending on the
configuration, there are 7 free bytes, or 1 free byte and a key B which takes
another 6 bytes. The way to change the configuration and the key(s) is simply
to write the desired configuration to the sector trailer block.

The granularity of access to the memory in a sector is the block. A “read”
command returns the contents of a whole block; a “write” command overwrites
a whole block. Thus, if one would like to change only one single byte, one
has to read the whole block, change the single byte, and write back the whole
block to the chip. For the sector trailer, there is an extra complication: a
read of the sector trailer returns zero on the byte positions where the keys are
stored. Thus, to change the configuration without changing the keys, one has

4

��
��
"!

001
A:k,a

��
��

011
B:k,a

��
��

101
B:a

W

O

W

O

W

O

:

:

: �

-

U
6

��
��

000
A:k:

?

��
��

100
B:k:

��
��

010

�

��
��

111-

��
��

110

R

label:

label:

fluid

fluid

restricted

restricted

frozen

frozen

states 001, 000, 010 have one key (A) and 1 + 6 free bytes

states 011, 101, 100, 110, 111 have two keys (A and B) and 1 free byte

Figure 1: State transition diagram of the trailer access bits C13C23C33.

to know the keys in order to construct the 16 bytes that must be written to
the sector trailer. Moreover, one cannot recover an unknown key B by changing
the configuration and then reading the corresponding bytes, since changing the
configuration required one to overwrite those very same bytes.

A sector is divided into four distinct parts, for which the access conditions
can be set independently of one another. In case of a 64 byte sector, every part
consists of one block. In case of a 256 byte sector, there are three parts of 5
sectors each, and one part which consists of the sector trailer only. A sector
has 12 access bits, which are four groups of three bits each; one group for every
part of the sector. The first three groups (C10C20C30, C11C21C31, C12C22C32)
contains data access bits, the last group (C13C23C33) contains the trailer access
bits.

On trailer access bits The three bits C13C23C33 which control the sector
trailer are particularly interesting, as they configure the configurability of the
sector: as long as one can write to the access bits, one can change the configu-
ration of the sector. The 8 possible states of the trailer access bits are depicted
in the state transition diagram2 in Figure 1. Every circle denotes a state. State
001 is the state in which the sector is when it leaves the factory. When it is
possible to change the sector trailer while in a particular state, the particular
state is annotated with key (A or B) that is required to change the state. The
key is annotated with the kinds of changes that can be made from that particu-
lar state (i.e. its rights). Annotation with the right k means, depending on the
context, that it is possible to change/overwrite keys A and B, or key A and the
6 free bytes; annotation with the right a means that it is possible to change the

2Figure 1 has been created by manual interpretation of Table 3 of the NXP documentation
of the Mifare Classic 4K [7].

5

one-key, i.e. two-key, i.e.
C13C23C33 000, 001*, 010 011, 100, 101, 110, 111

C1jC2jC3j A label A B label
000* r w d i fluid r w d i r w d i fluid
110 r d restricted r d r w d i fluid
100 r frozen r r w fluid
011 dead r w fluid
001 r d restricted r d r d restricted
010 r frozen r r frozen
101 dead r frozen
111 dead dead

Table 2: Data access bits. The factory defaults are marked with *.

12 access bits and the one free byte.
For example, from state 001 one can change both the keys and the access

bits using key A; from state 000 one can change only the keys, but nothing else.
State 101 is particular that one can change the configuration, but not the keys.
However, in two steps from state 101 one can also change the keys.

Also depicted in Figure 1 is the number of keys that a configuration has: the
upper three states have only one key (A), the lower three also have a second key
(B) at the expense of 6 free bytes. It can be seen that there the states 110 and
111 are equivalent. Not depicted in the figure are the read rights. Any valid
key gives read permission to the access bits and the free bytes.

As long as the trailer access bits are in state 001, 011 or 101, the trailer is
fluid, it can be changed in any other possible state, given the correct key. In
states 000 and 100, trailer is restricted, the access bits and the free bytes can
no longer be changed, but the keys can still be changed. In states 010, 110 and
111, the trailer frozen, it is in an unmodifiable state.

Note that it is not possible to give a key write access to the free bytes without
giving the same key total control over the complete sector.

Experiments show that in configurations which have one key and 6 free
bytes, one can guess the value of the 6 free bytes and get a yes/no answer from
the card. This is done by an authentication attempt for the non-existing key
B, where the guess is used as key. If the authentication attempt is successful,
the guess equals the 6 free bytes; otherwise, it is not equal. After successful
authentication, there appear to be no valid commands. This means that in
those configurations one can access the 6 bytes without knowledge of key A,
which clearly limits the secrecy guarantees of those bytes.3

Thus, depending on the configuration, there are per sector 1 or 7 bytes
available in the trailer, but their use has some serious limitations. Therefore, in
Table 1, we refer to these bytes as slack space.

On data access bits There are three sets (j ∈ {0, 1, 2}) of three bits each
C1jC2jC3j which control the configurations of the data blocks. Depending on
the sector size, a group of three bits controls either the rights to one single
block, or to 5 blocks of the sector. Essentially, a configuration is a mapping of

3Only after extensive exegesis, this behaviour can be inferred from the NXP documentation
[7].

6

rights to keys. Once authenticated against a key, there are four possible logical
operations, which coincide with the four distinctive rights: read (r), write (w),
decrement (d) and increment (i).4

There are 8 distinctive modes for C1jC2jC3j which distribute rights to the
keys A and B. However, C13C23C33 determines whether key B actually exists.
Therefore, one can distinguish 16 distinct configuration modes, which are given
in Table 2. This table gives for every combination of C1jC2jC3j and C13C23C33

the logical rights of all existing keys in that particular configuration. It can
be seen that in the one-key configuration, there are only four distinct right
configurations. In total, a block can thus be configured in 12 distinct ways.

All 16 modes have been labelled: dead means that the block cannot be
accessed at all; frozen means that the block is read-only; restricted means that
the block contents can be changed, but not to all possible states; fluid means
that the block contents can be changed to any other state.

All modes that carry the label restricted, have for C1jC2jC3j either the value
110 or 001. The NXP documentation [7] advertises these modes as “value
blocks”, which are suitable for “electronic purse applications”. There are re-
strictions on the memory modifications possible in these modes, which will be
discussed in the next section.

Impossibilities Obviously, there are many things the Mifare Classic chip can-
not do. However, some of these limitations may not be very obvious. We will
mention a few.

In a two-key configuration, the key B is always strictly more powerful than
key A. Thus, one cannot create a sector in which (for example) only key A can
access block 1, and only key B can access block 2. Therefore, one cannot use
smart tricks to divide a sector up into the equivalent of two smaller single-key
sectors.

There is no configuration which supports ‘blind writing’, i.e. that a key has
write access to a block, but no read access. The only thing that can be written
without being readable are the keys themselves; however, these written keys
cannot be recovered by the use of another more powerful key.

2.2 Using Value Blocks

A block that is in the “value block” mode stores a 32-bit signed integer. Instead
of write commands, the block offers increment and decrement commands. Key
A can only perform decrement operations. Key B, if it exists, can perform any
operation if the block is in mode 110. This is at least the general working of
a value block. Obviously, its contents can be changed, but not into any other
state desired. Therefore we consider value blocks to be restricted. In practice,
the modification possible on a value block are subject to some subtle conditions.
In this section we will elaborate on these conditions.

4Note that the actual command set contains also the commands transfer and restore.
Technically, the decrement, increment and restore do not change the non-volatile memory of
the chip, a subsequent transfer command is needed to write the result of these commands to
non-volatile memory. As the right to perform the transfer command is implied by the right to
perform decrement, increment or restore, the transfer right can be omitted from our analysis.
The restore command simply prepares the current value of a block for being re-written to
non-volatile memory. From the perspective of logical memory access, it is equivalent to a null
operation, and therefore omitted from our analysis.

7

Modification of value blocks always goes via a temporary register on the card.
There are three documented commands that write data from a value block into
the temporary register: increment, decrement and restore. The increment and
decrement modify the value accordingly before storing it in the register. The
restore command does not modify the value. There is one command which
writes from the temporary register to a value block: transfer.

All four commands take a parameter which specifies to which block the
operation should apply. It is thus possible to increment on block x, then transfer
on block y; which will leave block x unchanged but which will overwrite block
y.5

The actual block contains the 32-bit signed integer stored redundantly, and
an extra byte also stored redundantly (the latter is called “ADR” in the NXP
documentation [7]). The four commands all transport the ADR byte without
changing it. Thus, if a value is transported from one block to another block
using value block commands, the ADR byte is transported as well.6 The only
way to change an ADR byte except for taking it from another value block, is to
do a write operation on the block. Of course, a write operation is not permitted
on a value block, but it is permitted to write to a block in a fluid state, and
then change the mode to a value block after that.

As said, there are a number of restrictions on how a value block can be
modified.

1. Firstly, the increment, decrement and restore commands are only executed
in a consistent state (i.e. the redundant copies of the value do match),
and always result in a consistent state.7

2. Secondly, the increment and decrement do not allow arbitrary operands.
Both commands take a 4-byte signed integer, but ignore the sign bit of the
operand; effectively only positive operands are allowed.8 This is intuitive
in the sense that an increment command cannot effectively decrement a
value, nor vice versa.

3. Thirdly, the increment and decrement commands refuse to overflow the
value over maxint (2(32−1)−1) or underflow the value below minint (2(32−1)).9

This is intuitive in the sense that an incrementing a positive value cannot
result in a negative value, nor vice versa.

4. Fourth, the commands are only performed if they are actually allowed by
the configuration.

5The possibility to move values around like this is not discussed in the NXP documen-
tation [7], but observed from experiments, and confirmed as intentional by NXP in personal
communication.

6This transportation of the ADR byte is not mentioned in the NXP documentation, but
observed from experiments.

7Experiments show that if the card is in an inconsistent state and an increment, decrement
or restore is performed, the card returns an error, halts the card and does not change the
non-volatile memory. The NXP documentation however is ambiguous to what happens in
such a case.

8This follows from experiments with the chip. The NXP documentation is ambiguous to
what happens if these commands are given a negative operand.

9This follows from experiments with the chip. The NXP documentation [7] is ambiguous
as to what happens in such a case. Moreover, the NXP documentation is not explicit on the
values of maxint and minint, though these values are logical choices.

8

5. Fifth, after an increment, decrement or restore, transfer is the only allowed
command, and transfer is forbidden in any other state. At least, the
NXP documentation offers a command transition diagram which suggest
this. This implies that is is impossible to move the contents of value
blocks over the boundary of the individual sector: after authenticating for
another sector, first an increment, decrement or restore is required before
a transfer can be performed. This prevents the temporary register to serve
as a means to move data from one sector to the other.

Making a value block really restricted It can be said that though the
value block does not allow arbitrary write commands to it, special care has to
be taken in order to make sure that it cannot be modified arbitrarily by indirect
means. We identify two indirect means.

The first option is to copy a value from another value block in the same
sector (i.e. one in mode 110 or 001), using a restore and a transfer. This cannot
be prevented, but it can be detected by making sure all value blocks have a
different ADR byte.

The second option is to copy a value from another block in the same sector
which is in state 000 or 110, also using the restore/transfer combo. If such
a block exists, this cannot be prevented, and it cannot be detected, as the
adversary can write any information he desires to the originating block and
then copy it, including the ADR byte. This attack can be prevented by making
sure there simply are no blocks in the sector in state 000 or 110: then there is
nothing to copy from.10

Of course, it has to be made sure that the state of the blocks cannot be
modified by the adversary by setting the appropriate trailer access bits.

However, there are some other issues with value blocks which require some
attention from system integrators and other parties implementing Mifare Classic
production infrastructure, which we will mention further at the end of this
section.

An undocumented feature A previous version of this document, published
on October 6, 2008 contained the following text, unquoted:

“Karsten Nohl has been so kind as to inform me that the fifth re-
striction mentioned above does not hold. The undocumented feature
is that the command transition diagram given in the public docu-
mentation of NXP [7] is not complete. In some hardware versions,
after a decrement command, one can perform a read. This can read
the contents of another block in the same sector into the temporary
buffer. After such a read, one can perform a transfer which writes the
temporary buffer back to the block on which the original decrement
command was given. In this manner, a value block which is to be
in a restricted mode can be overwritten with any value that can be
constructed in a readable block in the same sector.

. . .
10Note that it is safe to use state 110 if the sector is in one-key mode, in which case state

110 is equivalent to state 001.

9

- authenticate -

��

��- halt

�
�

�- increment �
?�- restore -

�- decrement
6
�- read - �
- write - �

transfer �

?

�

�� �

��

6

!

Figure 2: Command transition diagram of the Mifare Classic. The transition
from read to transfer is claimed to exist by Karsten Nohl, but neither NXP nor
Radboud University could verify these claims.

This undocumented feature should be taken as a stiff warning that
there may be other showstopping features waiting to be discovered.”

This feature can be circumvented. Instead of avoiding just particular other
blocks within one sector, just avoid using any other block in the same sector.
That is, configure any desired number of value blocks reflecting the same value
within one sector, and configure all other blocks in the sector as dead (e.g. mode
111).

At Radboud University it was tried to reproduce these results, but without
success. Karsten Nohl mentioned that it is present in some hardware versions
of the chip, and at the time of testing we assumed that we simply did not have
the “luck” of having hardware version with the corresponding undocumented
feature.

In July 2008, we have given an early draft of the current paper to experts
from NXP to solicit feedback. That version contained a description of the
undocumented feature, which is also depicted in Figure 2. This resulted in a
lively and constructive interaction with NXP.

In november 2008, NXP informed Radboud University that it had tried
to reproduce the results on any version of the Mifare Classic they could lay
their hands on. According to NXP, none of these chips exhibited the behaviour
claimed by Karsten Nohl.

The claims of Karsten Nohl and NXP seem to contradict one another. How-
ever, NXP acknowledges that the undocumented feature mentioned by Karsten
Nohl may have been present in hardware versions of the Mifare Classic which
predate 1998. Karsten Nohl also explicitly claimed it was present in early ver-
sions of the chip. The most plausible explanation is then that some early hard-
ware versions indeed had the particular property, but current versions do not.
NXP stresses that it can strongly confirm the latter. Apparently, Karsten Nohl
somehow got his hands on an early hardware version of the chip which NXP
itself no longer has in their labs or archives. This explanation reconciles the
claims of both Karsten Nohl and NXP.

However, there appear to be some other issues with regard to safely us-
ing value blocks on the Mifare Classic, which have not been discovered by

10

Karsten Nohl nor Radboud University. These other issues are known by NXP
and have not been released into the public domain. We advise system integra-
tors and other parties implementing Mifare Classic production infrastructure,
who use value blocks, to get in touch with NXP and read Application Notes
155010, 155110 and 155120.11 Access to these documents requires signing a non-
disclosure agreement. As Radboud University refuses to sign such an NDA, we
have not read those documents ourselves, and rely on information from NXP
about its precise contents.

3 Preventing Restoration of Previous States

There are various attack scenarios to the Mifare Classic, depending on the appli-
cation context of the card. In some applications a card is stateful, and restora-
tion to a previous state may enable a criminal business case, or may at least
enable behaviour that should not be possible. Examples of such stateful appli-
cations are ticketing systems such as the OV-chipkaart and the Oyster Card,
where the card holds a monetary value. An exploit using state restoration would
have this life-cycle: A card which is in the desired state (“fully charged”) is ob-
tained and its state is read out completely. Then, the card is used until the card
is in an undesirable state (“empty”). Then the original state is restored, used
again, restored, used again, and so forth.

We propose a method for preventing the restoration of previous states. The
idea is roughly the following.

key infrastructure All genuine state-modifying readers are supposed to be
trusted, and there is a public-key infrastructure such that every genuine
state-modifying reader can sign data, and that every genuine reader can
verify signatures made by other genuine readers.

card state signing As a part of every transaction which modifies the state of
a card, a modification is made on the card which is irreversible. Moreover,
a cryptographic signature over the card status, including the status of the
irreversible part of the card, is written onto the card by the reader.

card state verification When a reader encounters a card, it will verify the
signature before it engages into a transaction with the card.

The irreversible modification on a card can be accommodated by using the access
bits of one sector in a particular configuration. To be able to detect illegally
modified cards, the changes to the irreversible block have to be tied to the rest
of the state of the chip. The signature over the whole card status establishes
this tie.

Note that the cryptography used in this solution is external to the Mifare
Classic chip: the chip only stores data which happens to exhibit cryptographic
properties enforced and checked by the readers. The only guarantee that the
chip has to provide is the irreversibility of one particular block.

Let us assume the case where an adversary is able to retrieve all relevant
cryptographic keys giving access to the Mifare Classic chip, the adversary knows
all previous states of the card, but the adversary has no access to a private key

11See http://www.mifare.net/security/application_notes.asp

11

http://www.mifare.net/security/application_notes.asp

name C1jC2jC3j C13C23C33 A B

I 001 100 r d r d k
II 001 110 or 111 r d r d
III 001 or 110 000 r d k
IV 001 or 110 010 r d
V 110 100 r d r d w i k
VI 110 110 or 111 r d r d w i

Table 3: Configurations in which data block group j is restricted and the trailer
is either restricted or frozen, all with respect to key A. For configurations I to
IV, this is also with respect to key B. The rights r, d, w and i are with respect
to block group j, the right k is with respect to the trailer.

of a reader. The adversary can change the status of the card. There are many
possible card states which have a valid signature. There is only one accessible
state of the card in which the card has a valid signature, which is the current
state. Thus, this adversary cannot change the card in any manner that a genuine
reader would accept.

Using a public-key infrastructure, there are two classes of genuine readers:

verification readers These readers have only public verification keys, and
thus can verify the validity of a card. However, these readers have no
private keys, and thus cannot perform valid state-modifying transactions.

state-modifying readers These readers have public verification keys, and pri-
vate signing keys. These readers can verify the validity of a card, and can
modify cards into new valid states.

Typically, compromised verification readers pose no security risk, as they only
contain public information. Therefore, verification readers can be distributed
abundantly if so is desired; everybody can verify whether a card is valid. In the
case that there is no need for a distinctive class of verification readers, the key
infrastructure can be simplified as follows: All state-modifying readers have a
shared symmetric key. The ‘signature’ is then the cryptographic hash of the
card status, encrypted under the shared key, or simply a MAC.

When one chooses for such a symmetric setup, one trades computation power
of the reader and storage space on the card (more on that later) for the possi-
bility to have readers which van verify the card state without changing it. Here,
we will continue our explanation as if an asymmetric setup is chosen, knowing
it can be trivially changed into a symmetric setup.

Verification of the integrity of the state of a card is of course also a crude
but effective way of performing input validation on the application level data
on the card.

Practical implementation There are a number of practical hurdles to take
for implementing the proposed solution. We will address and resolve them one
by one.

Firstly, an ‘irreversible’ mode of the card is needed. This can be done by
setting the access bits of one sector in such a configuration that (1) the access
bits cannot be changed thereafter (the trailer is restricted or frozen), and (2) one

12

block of the sector can only be changed ‘in one direction’ (the block is restricted).
Configurations I through IV given in Table 3 list all such states possible with
the Mifare Classic chip. In configurations V and VI given in Table 3, the data
block is restricted with respect to key A, but fluid with respect to key B. In
these configurations, the irreversible block is a ‘value block’ which contains a
32-bit signed integer. which can only be decremented.

The number of transactions possible is however not 232 − 1, but only about
105, the write endurance of the Mifare Classic chip (the number of times the
EEPROM can be overwritten before being worn out). The Mifare Classic chip
has a data retention time of 10 years, which is probably longer than the lifespan
of a single deployed card. Assuming a deployment time of 10 years, this would
allow an average of 27 transactions per day, every day, for 10 consecutive years,
including weekends and holidays. This will be sufficient for most applications
that we can think of at the moment. And the same issues apply for the other
blocks on the card which will be overwitten as well.

Secondly, a transaction mechanism is needed to switch from one valid state
to the next valid state. The Mifare Classic chip is in this respect a rather
simple chip which does not have special features such as ACID transactions
spanning changes to multiple blocks on the chip. The Mifare Classic does not
even support something like an ACID transaction on a single block: When a
card is taken out of the radiographic field at the wrong moment (tearing), a
block can be left in an inconsistent state, one in which the block contents is
neither the original state nor the projected to-be-written state. The projected
Mifare Plus will support ACID transactions, but only on sector trailers and not
on data or value blocks.12

The lack of atomicity in Mifare Classic write operations complicates our
solution considerably. Nevertheless it is possible to implement our solution on
Mifare Classic by using technologies which are similar to atomic commits in
databases and journaled filesystems.

In our solution we distinguish between the physical state and the logical state
of a card. The physical state is simply the complete memory contents. The
logical state is a restricted view on this memory contents, based on a storage
convention which is assumed to be used. The very same is the case with hard
disks in computers, which have a physical state (a very long list of bits) and a
logical view (a filesystem). The similarity is not a coincidence, but intentional.
Our solution is essentially storage convention, or if you like: a primitive file
system with atomic commits.

Central to our solution are the countersector which facilitates an irreversible
state counter and acid transactions simultaneously, the block allocation table
which relates physical card state to logical card state, and a signature suite
which is used to mark valid states and to verify the integrity of states. The
basic state transition mechanism looks like this:

1. State verification The logical card state is read out and verified. If the
card is not valid but in a recoverable state, the state is recovered. If the
reader cannot recover the card, the transaction is aborted. (More on these
states in the next section.)

12Personal communication with NXP, June 11 2008.

13

2. Valid state The card is in a consistent state. The countersector is valid
and the signature verifies. Some data blocks are unused.

3. Transaction preparation Into the unused blocks, new information is
written such that would the state counter be decremented, a next valid
state would be reached. This new information includes a new signature
over the new card state.

4. Transaction commit The state counter is decremented, atomically.

5. Next valid state The card is in a new consistent state. Some (other)
blocks are unused.

In the following sections, we elaborate on the details of the building blocks
of this solution.

3.1 Countersector

The countersector employs a mechanism to make the card resistant against
tearing. This is achieved by having multiple copies of the counter, dispersed
over multiple blocks within one single sector. In normal use, all copies are
decremented one by one. When tearing corrupts the countersector, recovery
has to be done. There are essentially three different strategies for this, all of
which will be presented.

The first strategy (RU1) has been developed by us (Radboud University).
Due to recent discoveries which will be discussed later on, this method is now
depreciated. We discussed our methods with NXP, who discussed them with
TNO. This resulted in a variation (NXP-TNO-RU), which is also presented.
Moreover, this led to a variation of our own strategy as well (RU2). The strate-
gies RU2 and NXP-TNO-RU are not (yet) depreciated. Each strategy has its
own pros and cons, which will be discussed later on.

The countersector consists of three value blocks which are in configuration
V or VI of Table 3. Thus, these blocks store a 32-bit integer which key A can
only decrement. Key B can also increment or overwrite these blocks, but key B
is not used nor present in normal readers. We number these blocks 1, 2 and 3.

The countersector can be in many states. We distinguish three classes of
states. Valid states are the states in which blocks 1, 2 and 3 of the countersector
hold one and the same number. Recoverable states are the states from which a
valid state can unambiguously be derived, these are given in Table 4. Corrupted
states are all the other states. As long as only the (pseudo)code of this paragraph
accesses the countersector, the countersector will never enter a corrupted state.

Between RU, NXP and TNO there have been some discussions as to how
many copies of the counter are needed. The original RU strategy has three
copies. In this manner, it is possible to reconstruct which state should be the
next state, essentially by doing a kind of majority vote on the counters. TNO
pointed out that one can also do with only two copies, and use the card data
to test which of the two counters matches the corresponding cryptographic sig-
nature elsewhere on the card. This requires substantially more read operations
when a recovery is done (which is hopefully rarely), but saves one decrement
operation for every normal transaction (which is obviously often). It does not
save storage space, as the third block in the countersector which could be saved

14

contents of block recovery strategy
RU1 RU2 NXP-TNO-RU

state valid 1 2 3 A B A A

0 X s s s
1 other s s c u c u
2 s− 1 s s c c u c c u
3 s− 1 other s c u c u
4 s− 1 s− 1 s c c u c c u
5 s− 1 s− 1 other c u c
6 X s− 1 s− 1 s− 1

Table 4: Possible states of a countersector after a transaction which may have
been interrupted. The state counter is denoted with s. Other means “neither
s nor s − 1”. There are three possible recovery strategies. For each of them,
it is given which key can recover in which direction from which state. The
capabilities c stands for commit and u stands for undo/rollback.

function go-to-next-state(first-block, old-state) → success
for j ← first-block up to 3 do

repeat
decrement(j, 1);
transfer(j);
n ← read-block(j);

until n 6= old-state;
if n 6= old-state − 1 then return false;

return true;

function commit-transaction() → success
old-state ← read-block(1);
return go-to-next-state(1, old-state);

Figure 3: Pseudocode of the commit transaction with key A.

function RU1-RU2-recover-commit-with-key-a() → success
b1 ← read-block(1); b2 ← read-block(2); b3 ← read-block(3);
if b1 = b2 = b3 then return true; /* state 0 or 6 */
if b2 = b3 then

if b1 6= b2 − 1 then return false; /* state 1 */
return go-to-next-state(2, b2); /* state 2 */

if b1 = b3 − 1 then
if b1 6= b2 then return false; /* state 3 */
return go-to-next-state(3, b2); /* state 4 */

return false; /* state 5 or not in Table 4*/

Figure 4: RU1, RU2: Pseudocode of the commit recovery with key A. States 0,
2, 4 and 6 of Table 4 are recognized and recovered if needed. Otherwise, the
function returns false.

15

function RU1-recover-commit-with-key-b() → success
b1 ← read-block(1); b2 ← read-block(2); b3 ← read-block(3);
if b1 = b2 = b3 then return true; /* state 0 or 6 */
if b2 = b3 then

new-state ← b2 − 1; /* state 1 or 2 */
else

new-state ← b1 ; /* state 3 or 4 or 5 */
if (b1 6= b3 − 1) and (b1 6= b2) then

return false; /* state not in Table 4 */
first-block ← 1; /* state 1 */
if b1 = new-state then first-block ← 2; /* state 2 or 3 */
if b2 = new-state then first-block ← 3; /* state 4 or 5 */
for j ← first-block up to 3 do

repeat
write-block(j, new-state);
n ← read-block(j);

until n = new-state;
return true;

Figure 5: RU1 — depreciated: Pseudocode of the commit recovery with key
B. All states of Table 4 are recognized and recovered. Otherwise, the function
returns false.

function RU1-recover-rollback-with-key-b() → success
b1 ← read-block(1); b2 ← read-block(2); b3 ← read-block(3);
if b1 = b2 = b3 then return true; /* state 0 or 6 */
new-state ← b3 ; /* state 1 or 2 or 3 or 4 */
if b2 = b3 then

last-block ← 1; /* state 1 or 2 */
else

if b1 = b3 − 1 then
last-block ← 2; /* state 3 or 4 */

else
if b1 = b2 then

new-state ← b1 + 1; /* state 5 */
last-block ← 3;

else
return false; /* state not in Table 4 */

for j ← last-block down to 1 do
repeat

write-block(j, new-state);
n ← read-block(j);

until n = new-state;
return true;

Figure 6: RU1 — depreciated: Pseudocode of the rollback recovery with key
B. All states of Table 4 are recognized and recovered. Otherwise, the function
returns false.

16

may not be used for any other purpose, due to the special care that has to
be taken when using value blocks. For the sake of simplicity and elegance, we
present all three recovery strategies using three copies of the counter, knowing
that the strategy can easily be changed into one using only two copies.

In a commit transaction, the blocks are decremented and read, one by one.
When an error occurs, the procedure is simply aborted. The pseudocode for
this procedure is given in Figure 3. If no errors occur, the countersector is again
in a valid state.

Now what happens when the operation is interrupted somewhere, or when
a decrement operation does not produce the desired result? If a decrement
operation does not change the state at all, it is simply retried. If a decrement
operation yields the wrong result, for whatever reason, the transaction is aborted
by the reader. As a result, when a countersector is in a valid state undergoes the
transaction, after the transaction the countersector will be in one of the states
of Table 4.

Every possible resulting state can be recognized. States 0 and 6 are valid
without further ado. From every invalid state it is possible to recover into a
valid state. Recovery into a valid state can mean either an undo (rollback) to
the state before the commit transaction, or a (re-)commit to the state intended
by the original commit transaction.

There are three recovery strategies.

RU1 — depreciated In strategy RU1, changing the contents of a block is
done by operations local to only that single block. Notably, this allows
the ADR bytes of the blocks to be distinct. For states 2 and 4, recovery is
done by using decrement transactions using key A, with pseudocode given
in Figure 4. Key B can recover by using write operations from any state
in Table 4, and in either direction, with pseudocode given in Figures 5
(commit) and 6 (undo).

RU2 Strategy RU1 is essentially a mutilated version of strategy RU1. In RU2
there is no key B, and recovery from states 1, 3 and 5 is not possible.
It is better than RU1 in the sense that there is no need for a key which
has write rights. Recovery from states 2 and 4 is done with key A, with
pseudocode given in Figure 4.

NXP-TNO-RU In strategy NXP-TNO-RU, changing the contents of a block
is done by copying it from another block in the countersector, using the
restore-transfer command combo. Notably, this strategy does not guaran-
tee that the different block retain distinct ADR bytes. For this strategy
only one key with the decrement right is needed. Recovery can be done
both forward (commit) and backwards (undo/rollback), unless the last
copy of the value has to be restored. In that case, only commit is possible.
Pseudocode for commit and undo/rollback is given in Figures 7 and 8,
respectively.

The pseudocode is already nontrivial as it is given. In reality, a number of
checks and adjustments has to be built in to accommodate the fact that a value
block is in fact not just a 32 bit integer, but a 16 byte array containing three
copies of the counter, and four copies of the ADR byte. This redundancy makes
sure that if a bit flips accidentally, the new state is not considered a valid one.

17

function NXP-TNO-RU-recover-commit-with-key-a() → success
b1 ← read-block(1); b2 ← read-block(2); b3 ← read-block(3);
if b1 = b2 = b3 then return true; /* state 0 or 6 */
if b2 = b3 then

repeat /* state 1 or 2 */
decrement(2, 1); /* register: b2−1 */
transfer(1); /* store in counter 1 */
n ← read-block(1);

until n = b2 − 1;
proceed-from ← 2;
old-state ← b2 ;

else
if (b1 6= b3 − 1) and (b1 6= b2) then

return false; /* state not in Table 4 */
if b1 6= b2 then

transfer-to ← 2; /* state 3 */
proceed-from ← 3;
old-state ← b1 ;

else
transfer-to ← 3; /* state 4 or 5 */
proceed-from ← 4;

repeat
restore(1); /* register: b1 */
transfer(transfer-to); /* store in counter */
n ← read-block(transfer-to);

until n = b1 ;
if proceed-from = 4 then

return true; /* state 4 or 5 */
else

return go-to-next-state(proceed-from, old-state);

Figure 7: NXP-TNO-RU: Pseudocode of the commit recovery with key A. All
states of Table 4 are recognized and recovered. Otherwise, the function returns
false.

First of all, one has to redefine (overload) the equality “=” operator such
that it returns false if either the redundant copies of the counter in one operand
do not match, or the redundant copies of the ADR byte in one operand do
not match. Even if the 16 byte operands are bit-wise equal. Moreover, the
“=” operator ignores whether the ADR bytes of the two operands are mutually
equal, but only compares the counter. The “6=” operation is to be read as an
abbreviation of “not (. . . = . . .)”, and thus inherits the overloading of “=”.
The arithmetic operator “−” applies to all redundant copies of the counter
simultaneously, but not to the ADR byte.

In the RU1 and RU2 strategies, the ADR byte requires some special treat-
ment. At initialisation, the ADR byte bust be set to the block number it is
stored in. The state is considered not valid if a block does not have the correct
ADR byte. Whenever a block is being overwritten by either a transfer or a

18

function NXP-TNO-RU-recover-rollback-with-key-b() → success
b1 ← read-block(1); b2 ← read-block(2); b3 ← read-block(3);
if b1 = b2 = b3 then return true; /* state 0 or 6 */
if b2 = b3 then

last-block ← 1; /* state 1 or 2 */
else

if b1 = b3 − 1 then
last-block ← 2; /* state 3 or 4 */

else
return false; /* state 5 or not in Table 4 */

for j ← last-block down to 1 do
repeat

restore(3); /* register: b3 */
transfer(j); /* store in counter j */
n ← read-block(j);

until n = b3 ;
return true;

Figure 8: NXP-TNO-RU: Pseudocode of the rollback recovery with key A. states
1 to 4 of Table 4 are recognized and recovered. Otherwise, the function returns
false.

write command, the overwriting is only considered successful if the ADR byte
contains the block number after the overwriting. In the recovery, if a block
does not have the correct ADR byte, it is defined to be in the “other” state of
Table 4, and thus can only be recovered using key B. In the recovery with key
B, the ADR byte of the block that has to be overwritten must also be its block
number. Of course, the actions with B cannot be performed in strategy RU2,
as it does not cater a key B.

The recovery code of every strategy is constructed in such a way that if also
the recovery is interrupted, the countersector remains in a recoverable state. The
transaction commit and recovery code jointly make sure that the countersector is
always in either a valid state or a recoverable state. However, it might happen
that the countersector is modified by other procedures into a state which is
not in Table 4, for example by an adversary which has key A. In that case,
the countersector cannot be recovered into a state which has a valid signature.
Thus, an adversary may cripple the transaction system and with it the whole
card, but he cannot put it to its own use.

comparing the strategies Essentially, the three strategies accomplish the
same functionality. RU2 is functionally somewhat weaker than RU1 and NXP-
TNO-RU because it cannot recover from all states in Table 4. Which criterions
can be used to select one strategy over the other? This depends on the kind of
redundancy and resistance one desires to build in. Let us not forget that the
whole exercise of this paper is one of adding extra security layers, such that if
some layers fail (as is the case with Mifare Classic), other layers remain. These
added layers either guarantee the same level of security, or at least mitigate
the risks that are the result of the failing layers. In fact, most if not all layers

19

recovery strategy
potential attack RU1 RU2 NXP-TNO-RU
card-only key retrieval X X
tearing block corruption X X

Table 5: Resistance of countersector recovery strategies against potential new
attacks on the Mifare Classic.

presented in this paper should be considered as mitigating, and not as providing
strong guarantees.

The lack of strong guarantees is inherent to the fact that the Mifare Classic
may have yet undiscovered vulnerabilities. In the spirit of adding redundant
security layers, it can be wise to speculate about possible undiscovered vulnera-
bilities. Here we will present two such vulnerabilities. In the previous version of
this document, the two following vulnerabilities were still hypothetical. One of
them turned out to be real, the other is still hypothetical. It will turn out that
the three strategies for recovery of the countersector differ considerably when
one takes the resistance to these hypothetical vulnerabilities into account. In
particular, strategy RU1 is depreciated because it leaves the card vulnerable to
the first vulnerability.

card-only key retrieval Recent discoveries on the Mifare Classic include a
method for retrieving any key of a card from the card itself only. This
means that one cannot safely assume that any key of any card is actually
secret. Keys with write permission or increment permission, if they exist,
can be recovered. Strategy RU1 has such a key, and is therefore rendered
useless due to the recent discoveries.

tearing block corruption It is known that if a card is teared out of the field
while data is being written to a block, the contents of the block are unde-
fined. Though the written data may is undefined, it could still be predi-
cable, for example as a function of the timing of tearing (After how many
nanoseconds the card is taken out of the field, or the field is switched off).
Now assume that an adversary has a key which allows him to decrement
a value block. Then, the adversary might try to switch of the field power
at such a moment that the data being written is actually a valid value
block, but only with a higher value. Then, the adversary has essentially
incremented a block without possessing the increment right.

Now how could these potential attacks be used to increment the counters in
the counter block?

Let us first consider strategy RU1. In strategy RU1 key B has write permis-
sion. Using a card-only key retrieval, this key can be retrieved and the counters
can be overwritten into any desired state. Therefore, RU1 is depreciated. On
the other hand, tearing block corruption in combination with an intercepted
key A is less feasible. That is, the adversary has only one possibility to try this
attack. If it fails, the block is in an inconsistent state and cannot be altered
using only key A. One might try to perform the tearing block corruption attack
by doing a restore on an uncorrupted block, and transfer to another “victim”
block, but it is likely that this will modify the ADR byte, as all ADR bytes

20

in the countersector are initialised distinctly. Moreover, once the attack is per-
formed successfully, the incremented value block cannot be restore-transferred
to the remaining countersector blocks, as this will inherently change the ADR
bytes. Thus, strategy RU1 does not work in the face of a card-only key retrieval
attack, but stands a decent chance against a tearing block corruption attack,
thanks to the special treatment of the ADR byte.

For strategy NXP-TNO-RU, the resistance to the mentioned vulnerabilities
is reversed: In strategy NXP-TNO-RU there is no key with write permission,
therefore a card-only key retrieval attack cannot produce a key with write per-
mission, leaving the strategy resistant against this attack. However, resistance
against tearing block corruption is absent, because the adversary can try as
often as he likes to increment a counter by tearing. He does this by doing a
restore from one block, and a transfer to the other, until the other block has a
desired value. After then, the adversary can restore-transfer the desired value
to the other blocks. This will result in the ADR bytes of the different blocks
being equal. However, this is to be expected since the same procedure is used
for recovering from accidental block corruption. Thus, strategy NXP-TNO-RU
is resistant against a card-only key retrieval attack, but not against a tearing
block corruption attack.

Strategy RU2 is resistant against both attacks. This follows from the fact
that RU1 is resistant against tearing block corruption, and that RU2 is equal to
RU1 except that it does not cater a key with write permissions. This resistance
against both attacks comes at a price, however. RU2 cannot recover from all
states in Table 4. Thus, card can accidentally get corrupted without the pos-
sibility to revitalise them. However, it remains possible to read all the data on
the card, which will be useful in a restitution procedure.

These resistance properties are summarized in Table 5. To choose a strategy,
one has to determine which attacks one considers plausible to exist. Then one
takes the strategy which is resistant against those attacks. If one considers both
attacks plausible, one has to either sacrifice functionality (by choosing RU2) or
sacrifice security (by choosing either RU1 or NXP-TNO-RU).

3.2 Block Allocation Tables

While countersectors provide a transaction mechanism, we still need a way to
define, for a given state of the countersector, which blocks of the card define the
current logical state of the card.

The logical state of the card always includes the countersector. When a
commit transaction is enacted, the card should be in a valid logical state, and
after the commit transaction this should also be the case. Thus, the card needs
the capacity to store two valid states simultaneously, and there is need for a
convention which defines which blocks of the card make out the logical state,
given the state of the countersector.

A complete transaction typically works like this: A reader authenticates to
a card, reads out the current logical state, recovers it if needed, and it may
verify the signature. Then it infers which memory blocks of the card are not
part of the logical state. The new logical state is written to the free blocks,
and then an atomic commit transaction is performed on the countersector. If
somewhere during the whole process the card and the reader lose their con-
nection, the reader has to re-authenticate and start all over again. The reader

21

may not assume any persistence of the contents of free blocks over different
connection sessions. However, the reader may not write to the card without the
countersector being in a valid state.

This paragraph will elaborate on a few possible block allocation conventions.
Ultimately and obviously, one convention should be chosen and stuck to. The
list of conventions mentioned is not exhaustive, but mentions some obvious and
some efficient solutions.

Common to all conventions is the oddity of the counter which is stored in
the countersector. The oddity can be observed by taking the least significant
bit of the state counter. When the state counter is odd (resp. even), the logical
card state is said to be ‘odd’ (resp. ‘even’). Moreover, without loss of generality
we assume that the countersector is located in sector 1 (blocks 4-7) of a card,
and that sector 0 (blocks 0-3) of the card is immutable (fixed).

fifty-fifty When the logical state is odd (even), all odd (even) sectors (≥ 2)
make up the logical card state. Preparing a logical state change involves
writing a complete new logical state to the card. The storage capacity
of a logical state is essentially a little under 50% of the physical storage
capacity of the card.

partial fifty-fifty The same as fifty-fifty, but the convention does not apply
to all sectors ≥ 2, but only to a selection of those sectors. Typically a
number of sectors is either left unused (because not that much memory
is needed) or is used in another way (for example to store contents that
should be immutable).

allocation table There is a compact representation which defines which data
is stored in which blocks (or sectors) of the card. There are two reserved
parts of memory on the card which store this metadata. We will call them
supernodes. In even states, the even supernode is authoritative, in odd
states the odd supernode is authoritative.

For example, the supernodes could each be 3 blocks large. Both super-
nodes offer 384 bits of metadata storage (3 blocks × 16 bytes × 8 bits).
This allows the memory to be divided into 64 partitions which can be
allocated individually. This can be seen by noting that it takes 6 bits to
encode an integer between 0 and 63, and 6 × 64 = 384. The unit of al-
location may then be the individual sector, but also the individual block.
Note that blocks cannot be partially written, and therefore the block is the
smallest possible allocation unit. As long as the smallest allocation unit
is respected, many tricks and technologies generally used in file systems
can be applied similarly to the Mifare Classic.

The allocation table takes up some storage space, but allows the logical
card state to consume (considerably) more than 50% of the physical stor-
age capacity of the card. Preparing a logical state change involves writing
the changed parts to free blocks, writing an adjusted allocation table to
the currently non-authoritative supernode.

The fifty-fifty convention is not particularly efficient. On the other hand, it
is conceptually very simple and it does not restrict in any manner how much the
state can change within one single transaction. The partial fifty-fifty reduces

22

the fifty-fifty convention to only a limited area of the chip, which mitigates the
overhead of making a transaction, but which also limits the storage capacity of
a logical state.

The allocation table convention is a special case of the partial fifty-fifty
convention. When state changes only change a moderate part of the logical
state, this convention requires considerably fewer write operations than the
other conventions. Moreover, it allows the logical state to take up more than
50% of the physical state, of course at the expense that state changes can no
longer change 100% of the logical state. This can be seen by observing that
if the logical state takes more than 50% of the memory of the card, there are
insufficient free blocks to prepare a complety different new state.

3.3 Signature Suite

The standard way to create a cryptographic signature is to make a cryptographic
hash of the message (in this case the logical card state) and then to sign this
hash. On both the hash and the signature, there are some design choices to be
made.

Since the Mifare Classic has only little memory, the memory footprint of
these choices have to be taken into account. Also, computing the hash requires
access to the logical card state, which may involve time-consuming read oper-
ations on the card. By using incremental hash functions or hash trees, storage
capacity may be traded for transaction time. Using only one hash implies that
a verification reader must have access to the complete logical card state. This
may be undesirable, and using a hash tree may resolve this issue. We will discuss
these issues one by one.

But first we will choose some security parameters. As this paper is an effort
to make the best of Mifare Classic, we will choose the parameters such that
the cryptographic guarantees are rather high. This will consume a particular
amount of memory on the card. If one takes a more relaxed view to security,
these parameters might be taken somewhat lower which clears up some storage
space for application use.

The first parameter we choose is the bit length of the hash value. All other
parameters are chosen to match the security level of the hash. We go for the
option of 256 bits, which is considered “Good, generic application-independent
recommendation, ≈ 30 years” (counting from the year 2006) [4]. This takes
exactly 2 blocks of the Mifare Classic.

Signature itself There are two obvious options for the signature algorithm,
namely RSA and DSA. An RSA signature is a number modulo n (where n = pq).
The cryptographic strength provided by a hash value of 256 bits is matched by
an RSA key pq of 3248 bits [4]. A DSA signature is a tuple (r, s), where r and
s are numbers modulo q. The cryptographic strength provided by a hash value
of 256 bits is matched by an DSA requires q to be 256 bits long[4].

Thus, given our choice for 256-bit hash values, a matching RSA signature
requires 3248 bits (406 bytes) of storage. This takes almost 26 blocks of the
card. However, a matching DSA signature requires 512 bits (64 bytes) of storage,
which is only 4 blocks. Given the little storage capacity of the Mifare Classic, we
opt for the signature algorithm with the smallest signature memory footprint,
which is DSA.

23

As pointed out earlier, when no distinction between verification readers and
state-modifying readers is needed, symmetric cryptography will suffice. In that
case, the signature can simply be a MAC.

Partial signature verification A simple implementation of signed card states
takes all block of the logical card state (except the signature itself), computes
the cryptographic hash over it, computes the signature over this hash and stores
it in the logical card state. This requires that every verification reader and every
state-modifying reader has read access rights to the complete logical card state,
and exercises these rights exhaustively on every transaction.

There may be cases in which one does not give a reader access to the full
logical state of the card, but where the reader should nevertheless verify up to
some extent whether the card has a valid signature. Similarly, there may be
cases in which a reader does have sufficient access rights, but for some reason or
another should not exercise all these rights. (E.g. the read operations consume
too much time.) In such cases, one can use a hash tree.

Without loss of generality, we divide the logical state of the card into a
number of areas, each consisting of a number of blocks. One special area is the
root area, which includes at least the countersector, and the (DSA) signature.
The signature is a signature over the data in the root area. All readers have the
Mifare Classic keys to read these sectors, and can trivially verify the signature,
and with it the integrity of the root area.

Other areas we call limited access areas. The Mifare Classic keys to these
areas may be restricted to only a subset of all genuine readers. To make the
contents of a limited access area verifiable, the cryptographic hash of the limited
access area has to be placed in another area. This other area may be the root
area but also another verifiable limited access area. Thus, all limited access areas
are linked to the root area either directly or chained via other limited access
area. The Mifare Classic access keys must be distributed in such a manner that
a reader which has access to a particular limited access area can verify the whole
chain of limited access areas up to the root area.

Note that with the use of incremental hash functions [1, 2, 3], it is possible to
update hash values without verifying them. This may be useful for situations in
which there is insufficient time to read all the blocks that are required to actually
verify their integrity. Using incremental hash functions essentially provides a
way to change the state without verifying it, in such a manner that the new
state only verifies if the old state would have verified.

Saving space on hashes Karsten Nohl has pointed out in private email that
when the signature is a MAC, it may be possible to optimize on the number
of bits required to store these ‘intermediate’ hash values which link limited
access areas to the root area, possible via other areas. This crucially depends
on three satisfiable properties: (1) the attacker not knowing the key used in
the MAC, (2) every card has a unique MAC key, and (3) the card wears out.
When the attacker does not know the MAC key, he essentially has to have
the luck of guessing the correct MAC. The infrastructure may punish bad luck
by permanently blocking the card. Using 32-bit MACs, the chance of luck is
smaller than one in four billion. Alternatively, the attacker could wait to see
the same MAC for two different values in the same block. For 32-bit MACs,

24

that would take on average 65,000 transactions, which is already rather close to
the write endurance of 100,000 transactions. Besides that, monitoring the card
over 65,000 different transactions is may prove to be sufficiently impractical.
Note that if the MAC key is share among different cards, it may be possible to
distribute this process over different cards. Incorporating the UID of the card
into the process, ideally by deriving the MAC key from the UID, makes this
impossible.

For the purposes of this paper, our main message is that it is possible to es-
sentially trade storage space for security, and that it is possible to pre-emptively
add redundant security to an RFID card such that if some security layers fail,
others will remain. As Nohl rightfully points out, it may be possible to do this
trade more economically than in the way sketched by us. However, we empha-
size that such highly optimized trades must be analyzed thoroughly, as they
may allow particular attack scenarios. By choosing the security parameters on
the safe side, adhering to industry recommendations, such particular scenarios
are pre-emptively ruled out.

4 Distinguishing Clones from Originals

In the previous section, we described a way which prevents attack scenarios
in which the attacker possesses the attacked card, and modifies it at will. Of
course, there is another avenue of attacks, which is cloning: The contents of a
genuine card are read out, and copied onto a clone host device. The clone host
device may be another (blank) Mifare Classic card, but it may also be another
RFID card which is “Mifare Compatible”, or a generic RFID emulator such as
the Ghost or the Proxmark313, or an NFC chip which is mounted in a gadget
like a mobile phone.

For a perfect clone, the clone host device must be indistinguishable from the
original card, from the perspective of the genuine reader. Using side channel
information, it is often possible to distinguish functionally equivalent devices.
In a lab setting with specialised equipment, we have been to precisely measure,
among other characteristics, the response time and field strength of clone host
devices. The response time alone allowed us to distinguish between a genuine
NXP Mifare Classic, a Fudan, and an NXP SmartMX (which is “Mifare Com-
patible”). Generic RFID emulators, can (at least in theory) be programmed to
mimic the side channel characteristics of any desired clone host device as much
as possible, including the original Mifare Classic.

Deployed production systems differ from a lab setting in a number of ways. A
production reader typically consists of a non-modifiable NXP reader IC (which
implements both CRYPTO1 and RFID radio modulation) and a programmable
“firmware” IC which holds the application firmware. The NXP reader IC does
not provide any means to collect side channel information, other than the re-
sponse times of the reader IC itself. Theoretically it may be possible to program
the firmware IC in such a way that it collects this timing information, but the
typical firmware IC is not powerful enough to do this. Other side channel in-
formation, such as field strength, remains unknown to production readers. It
is questionable whether it is wise to use side channel information in production

13See http://www.proxmark.org

25

http://www.proxmark.org

systems. If one would use side channel information to reject possible clone host
devices, this may have a serious negative impact on system robustness.

In this section we focus on information which off-the-shelf readers do have
access to. This is the UID of the card used in the anti-collision-phase, the
SAK (select acknowledge) value, and the (decrypted) responses to Mifare Clas-
sic commands (such as the contents of a block after it is requested). Note that
using this information, one can also distinguish many clone host devices. The
UID transmitted in the anti-collision typically leaks information about the man-
ufacturer of the device. The Fudan mimics a genuine Mifare Classic 4K in this
respect, but has a different memory layout which can be detected programati-
cally.14 Mifare Classics and licenced Mifare Compatible chips also have different
manufacturer information in block 0 of the card. As such, we have been able to
distinguish between the genuine, the unlicensed Fudan and licenced compatible
versions of Mifare Classic while using proper sector keys but without using side
channel information. Still, nothing beats an emulator.

Let us assume the reader cannot detect the type of clone host device. That
is, the clone host device is either a Mifare Classic card of the same series, or it
is a generic RFID emulator. What options are left for detecting clones?

Let us first consider the case where the clone host device is a (possibly
counterfeited) Mifare Classic.

The obvious option for clone detection is using the UID of the card, which is
used during the anti-collision and which is also stored in block 0 of the card. This
UID cannot be changed.15 A simple solution16 is to store a MAC of the UID on
the card. A reader which has the key K which is used to compute the MAC can
detect whether the UID matches the MAC. As long as K is not known by the
adversary, an adversary cannot fake such a MAC. A more elaborated solution is
a cryptographic signature on the UID, for which readers only have the signature
verification keys. If the transaction infrastructure of Section 3 is used, this can
be established at no extra storage cost, by including block 0 of the card, which
contains the UID, into the logical card state.

The problem cases left are UID-programmable cards and emulators.

New bugs In the previous version of this document, published on October 6,
2008, we presented an approach which — roughly speaking — allowed one to
effectively detect and disable such clones. Unfortunately, due to recent discov-
eries of the Radboud University Nijmegen, this approach does is not effective
on the Mifare Classic.

The recent discoveries include methods to retrieve the key of any sector.
No interaction with genuine readers is required for this, hence these attacks
are called “card-only”. Radboud University has not (yet) published any details

14For the memory lay-out differences, see Table 1. We have also been able to distinguish
between the counterfeit and the genuine Mifare Classic without engaging in authentication,
by sending particular invalid commands to the card. The two versions react differently. It is a
matter of definitions whether one considers this side channel information. However, standard
NXP reader ICs do not facilitate this test.

15There have been rumors of unlicensed counterfeit Mifare Classic cards for which the UID
are programmable, but we have not been able to confirm these reports.

16The simplest solution is of course a whitelist of used UIDs, known to all readers. However
this is in general not practical.

26

on these attacks. On the Mifare website of NXP [6], these new discoveries are
described as follows:

“• Card only attacks are possible in lab environments and at con-
siderable precalculation time. This is expected to further evolve
into an attack that does not need lab conditions and may re-
quire less precalculation time.*

• One particular card only attack can, with a certain prerequisite
on knowledge about the card, retrieve all keys and data from the
card in about a second per key using a laptop and limited value
equipment. Interaction with the card can be limited to two
times less than a second: first to get material for key recovery
and then once the keys are retrieved an interaction to retrieve
the data.*

* (The recent vulnerabilities are courtesy to Radboud University
Nijmegen, who have given early warning to NXP in order to allow
timely communication such that system integrators can take mea-
sures).”

The developed approach still holds for memory card which do not suffer from
card-only key retrieval attacks. As the focus of this document is Mifare Classic,
the details of the approach have been completely removed. The method will be
published in a scientific paper not focusing on Mifare Classic, but on memory
cards in general.

5 Key list

In this paper, a large number of keys have been introduced. Using them all in
the prescribed manner may improve Mifare Classic security. Mixing up the keys
may lead to disasters. Therefore, here we list and summarize all keys that are
proposed in this paper.

Where keys should de diversified, diversification should be done on both card
UID, sector number, and whether it is key A or B.

Mifare sector keys (CRYPTO1) Exposure of these keys of a card allow an
attacker to cripple that card. These keys are used regularly and can be
intercepted, therefore it does not make sense to hide them too obsessively.
To make a large-scale denial-of-service by vandalism slightly more difficult,
the Mifare sector keys should be diversified from a master key.

Mifare master key (MASTER) This key is given to all readers in the sys-
tem. Exposure of this key facilitates denial of service, but does not fa-
cilitate fraud. Seen from a criminal perspective, this key might allow the
“blackmailing” business case, but not the “fraud” business case.

Card state public key (DSA-public) This key allows one to verify the va-
lidity of a card state. This key may be distributed freely.

Card state test private key (DSA-private) This key allows one to change
the card state. It is needed by all state-modifying readers. Exposure of

27

this key will allow attackers to change the state at will, which notable
includes changing stored (monetary) values to any desired value.

Card state symmetric key If there is no need for a special class of verifica-
tion readers, the card state may be “signed” with a symmetric key (e.g.
a MAC). In case of the approach of Karsten Nohl (given at the end of
Section 3.3) to save storage space on the hash tree is used, this key can
be used for construction and verification of the MACs. Exposure of this
key will allow attackers to change the state at will, which notable includes
changing stored (monetary) values to any desired value. This key will be
needed both for verification and modification of card states.

6 Conclusion

The Mifare Classic has a number of security features built in. Some turned out
to be flawed. Some features, which are not particularly advertised as security
features, can be used as a building block for additional security mechanisms.
This document describes such additional security mechanisms.

As a result, it is possible to prevent successful state restoration attacks. That
is, we currently believe this countermeasur is effective. However, it is provided
“as is”. We welcome feedback, decent peer review and further research is re-
quired. Crucially, though obviously, our countermeasures will not be effective if
the features which are used as building blocks work can be circumvented. New
attacks might appear which could make the countermeasures described in this
document obsolete. Of course, similar reasoning applies to any kind of RFID
card.

System owners will have to decide for themselves whether they should im-
plement these countermeasures. It may be that migrating to a wholly different
card is just as cumbersome as implementing these countermeasures. However,
one may want to implement these or similar countermeasures also on a newly
selected card. That will pre-emptively offer extra security layers in case the
cryptography of the newly selected card will fail at some point in the future.

6.1 Acknowledgements

This document has seen many revisions, we started working on it when the
results of [5] were not yet fully finalised. The ESORICS paper [5] was highly
influential. Due to a court order, it was not possible to distribute draft versions
of [5] until the ESORICS conference itself. Drafts of the current paper have been
distributed to NXP (which had detailed knowledge of the ESORICS paper) and
to TNO and Karsten Nohl (who were not in a position to have access to the
ESORICS drafts).

Karsten Nohl, NXP and TNO have given very valuable feedback, and I
thank them for it. Karsten Nohl suggested the method to save storage space
on hashes which given at the end of Section 3.3. The NXP-TNO-RU strategy
given in Section 3.1 from NXP and TNO was a very welcome contribution. I
thank NXP for their detailed feedback, their openness and pro-active attitude
in discussing the details of this paper.

I am greatly indebted to my colleagues, with whom I experienced the adven-
ture of getting to grips with Mifare Classic. Their results, and the discussions

28

with them have helped this paper to be what it is. They are: Flavio Gar-
cia, Jaap-Henk Hoepman, Bart Jacobs, Ravindra Kali, Vinesh Kali, Gerhard
de Koning Gans, Ruben Muijrers, Peter van Rossum, Roel Verdult and Ronny
Wichers Schreur.

I believe that security by obscurity is bad. The details of possible attacks
have to be public knowledge, and the details of possible countermeasures as
well. Without insight in the attacks, it is difficult to evaluate the effectiveness
of countermeasures. Restraining access to this information hampers progress
in scientific security research. Such scientific research is needed to advance the
application of security products in society which are actually secure. It is bad
when vulnerable products are around for a long time; non-ethical knowledgeable
people will exploit these vulnerabilities without disclosing that these vulnera-
bilities exist. Apparently disclosure of vulnerabilities is needed to convince the
responsible parties to migrate to better solutions.

References

[1] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptog-
raphy: the case of hashing and signing. In Y.G. Desmedt, editor, Advances
in Cryptology - CRYPTO ’94, volume 839 of Lecture Notes in Computer
Science, Berlin, 1994. Springer-Verlag. .

[2] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryp-
tography with application to virus protection. In Proceedings of the 27th
Annual Symposium on the Theory of Computing. ACM, 1995.

[3] Mihir Bellare and Daniele Micciancio. A new paradigm for collision-free
hashing: Incrementality at reduced cost. In W. Fumy, editor, Advances in
Cryptology- EUROCRYPT 97 Proceedings, volume 1233. Springer-Verlag,
1997.

[4] ECRYPT. Yearly report on algorithms and keysizes (2006), January 2007.

[5] Flavio D. Garcia, Gerhard de Koning Gans, Ruben Muijrers, Peter van
Rossum, Roel Verdult, Ronny Wichers Schreur, and Bart Jacobs. Disman-
tling mifare classic. In Proceedings of ESORICS 2008, 13th European Sym-
posium On Research In Computer Security, pages 97–114, Malaga, Spain,
2008.

[6] NXP Semiconductors. MIFARE.net product website http://www.mifare.
net/security/mifare_classic.asp.

[7] NXP Semiconductors. MF1ICS70 functional specification. online on mi-
fare.net, January 2008.

29

http://www.mifare.net/security/mifare_classic.asp
http://www.mifare.net/security/mifare_classic.asp

	Introduction
	The Mifare Classic
	Configuring
	Using Value Blocks

	Preventing Restoration of Previous States
	Countersector
	Block Allocation Tables
	Signature Suite

	Distinguishing Clones from Originals
	Key list
	Conclusion
	Acknowledgements

