Category Theory - Exercise Sheet 8

November 21, 2013

The deadline is 6 pm on Thursday the 28 th of November. You can either email your answers to r.furber at cs.ru.nl (do not forget the attachment) or put them in Robert Furber's postbox on the north side of the second floor of the Huygensgebouw. It is inside a white cabinet with its back to the stairs, opposite the photocopier. Please fasten the sheets of paper together firmly with a staple or paperclip. Folding over the corner is not good enough.

For each question, the number of marks available is indicated in round brackets. The total number is 50 .

25

For each of the following functors, determine if they are full, faithful, (6pt) both or neither. No proof is required.

1. The forgetful functor U_{1} : Posets \rightarrow Sets.
2. The forgetful functor U_{2} : Posets \rightarrow PreOrd.
3. The forgetful functor $U_{3}: \operatorname{Vect}_{\mathbb{R}} \rightarrow \mathbf{A b}$.
4. The constant functor F : Sets \rightarrow Sets that maps a set to the empty set and a function to the empty function.
5. The constant functor G : Sets \rightarrow Sets that maps a set to the set $\{1,2\}$ and a function to the identity.
6. The free monoid functor $(-)^{*}$: Sets \rightarrow Monoids.

Let $F: \mathbf{C} \rightarrow \mathbf{D}$ be a full and faithful functor. For each of the following statements determine whether it is true or false. Give a short argument for each part.
(a) If $X \in \mathbf{C}$ is initial then so is $F(X) \in \mathbf{D}$.
(b) If $F(X) \in \mathbf{D}$ is initial then so is $X \in \mathbf{C}$.

27

Show that a functor category $\mathbf{D}^{\mathbf{C}}$ has binary products if \mathbf{D} does. (12pt) (Hint: Construct the product of two functors F and G "objectwise": $(F \times G)(C)=F(C) \times G(C))$

28 Star product

Let $F, G: \mathbf{A} \rightarrow \mathbf{B}$ and $H, K: \mathbf{B} \rightarrow \mathbf{C}$ be functors.
Let $\eta: F \Rightarrow G$ and $\delta: H \Rightarrow K$ be natural transformations.
For each object A of \mathbf{A}, the following diagram commutes by naturality of δ.

We define the star product $\delta \star \eta$ of the natural transformations δ and η by

$$
(\delta \star \eta)_{A}=\delta_{G A} \circ H\left(\eta_{A}\right)=K\left(\eta_{A}\right) \circ \delta_{F A}
$$

for every object $A \in \mathbf{A}$.
(a) Show that the star product $\delta \star \eta$ forms a natural transformation
$H \circ F \Rightarrow K \circ G$.
(b) Show that the star product \star is associative.
(c) Let $\varepsilon: F \Rightarrow G, \eta: G \Rightarrow H, \mu: K \Rightarrow L, \nu: L \Rightarrow M$ be natural transformations, where $F, G, H: \mathbf{A} \rightarrow \mathbf{B}$ and $K, L, M: \mathbf{B} \rightarrow \mathbf{C}$ are functors.
Show that $(\nu \circ \mu) \star(\eta \circ \varepsilon)=(\nu \star \eta) \circ(\mu \star \varepsilon)$.

29 Godement's five rules

Given the diagram

Prove the following statements:
(a) $1_{G \circ F} \star \xi=1_{G} \star\left(1_{F} \star \xi\right)$ and $\xi \star 1_{K \circ L}=\left(\xi \star 1_{K}\right) \star 1_{L}$
(b) $1_{U} \star 1_{K}=1_{U \circ K}$ and $1_{F} \star 1_{U}=1_{F \circ U}$
(c) $\quad F \circ U \xrightarrow{1_{F} \star \xi} F \circ V \quad$ commutes.

30

For a natural number n, define $\bar{n}=\{0,1, \ldots, n-1\}$. Let $\boldsymbol{S e t s}_{\text {fin }}$ be the category of finite sets and functions between them and let \mathbf{N} be the full subcategory of $\mathbf{S e t s}_{\text {fin }}$ consisting of all \bar{n} for $n \in \mathbb{N}$. Prove in detail that these two categories $\mathbf{S e t s}_{\mathrm{fin}}$ and \mathbf{N} are equivalent.

