Category Theory Exercise Sheet 2

September 18, 2013

The deadline is 6pm on Thursday the 26th of September. You can either email your answers to **r.furber** at **cs.ru.nl** or put them in the Robert Furber's postbox on the north side of the second floor of the Huygensgebouw. It is inside a white cabinet with its back to the stairs, opposite the photocopier.

For each question, the number of marks available is indicated in round brackets. The total number is 50.

5 Functors

For many categories (called locally small in the book) the (co)-slice can be represented in the category of sets. Let **C** be a category and denote the set of arrows between $A, B \in |\mathbf{C}|$ by $\operatorname{Hom}_{\mathbf{C}}(A, B)$. We write for simplicity $\operatorname{Hom}_{\mathbf{C}}(A, -)(B) = \operatorname{Hom}_{\mathbf{C}}(A, B)$ and $\operatorname{Hom}_{\mathbf{C}}(-, B)(A) = \operatorname{Hom}_{\mathbf{C}}(A, B)$ respectively.

- (a) Show that for all object $A \in \mathbf{C}$ the mapping $\operatorname{Hom}_{\mathbf{C}}(A, -)$ can be (4) extended to a functor $\mathbf{C} \to \mathbf{Sets}$.
- (b) Show that for all object $A \in \mathbf{C}$ the mapping $\operatorname{Hom}_{\mathbf{C}}(-, A)$ can be (4) extended to a functor $\mathbf{C}^{\operatorname{op}} \to \operatorname{\mathbf{Sets}}$.

6 Universal properties

Let P be a set together with an operation $\lor: P \times P \to P$, written as $a \lor b$ for elements $a, b \in P$, which is associative, commutative and idempotent (meaning that $a \lor a = a$). This operation is called *join*. Let us assume furthermore that there is a unit element $\bot \in P$ for the join: $p \lor \bot = p = \bot \lor p$ for all $p \in P$. We call such a triple (P, \lor, \bot) a *join-semilattice* (JSL).

Let **JSL** be the category of join-semilattices and homomorphisms, where a homomorphism $f: (P_1, \vee_1, \bot_1) \to (P_2, \vee_2, \bot_2)$ of JSLs is a map $f: P_1 \to P_2$ between the underlying sets which preserves the join and unit: $f(a \vee_1 b) =$ $f(a) \vee_2 f(b)$ and $f(\bot_1) = \bot_2$. The category **JSL** is equipped with an obvious forgetful functor U:**JSL** \to **Sets** given by $U(P, \vee, \bot) = P$ and U(f) = f. Now let X be an arbitrary set and consider $\mathcal{P}_{fin}(X)$ the set of finite subsets of X:

$$\mathcal{P}_{\text{fin}}(X) = \{ A \subseteq X \mid A \text{ finite} \}$$

- (a) Show that \mathcal{P}_{fin} extends to a functor \mathcal{P}_{fin} : Sets \rightarrow JSL. (6)
- (b) Show that there is an inclusion map $\eta_X \colon X \to U(\mathcal{P}_{fin}(X))$ (7) which is universal in the following way. For all joinsemilattices (P, \lor, \bot) and maps $f \colon X \to P$ there is a unique arrow $\overline{f} \colon \mathcal{P}_{fin}(X) \to (P, \lor, \bot)$ in **JSL** such that

commutes.

You may use here that for all join-semilattice (P, \lor, \bot) and all finite subsets $A \subseteq P$ the join $\bigvee A$ exists and is given by $\bigvee \emptyset = \bot$ and $\bigvee \{a_1, \ldots, a_n\} = a_1 \lor \cdots \lor a_n$.

7 Constructions on Categories

Let I be a fixed set of indices. Let $\overline{\mathbf{Sets}^{I}}$ be the category of

- *I*-indexed families $\{X_i\}_{i \in I}$ of sets with $X_i \cap X_j = \emptyset$ if $i \neq j$ and
- morphisms $f: \{X_i\}_{i \in I} \to \{Y_i\}_{i \in I}$ given as family $\{f_i\}_{i \in I}$ of maps with $f_i: X_i \to Y_i$ composed component-wise.

Show that this category is isomorphic to the slice category \mathbf{Sets}/I , i.e. (14) there is an isomorphism $\mathbf{Sets}/I \cong \overline{\mathbf{Sets}^{I}}$ of categories.

8 Mono-, Epi- and Isomorphisms

(a) Consider the following commuting triangle

$$A \xrightarrow{f} B$$

$$\downarrow^{h} \downarrow^{g}$$

$$C$$

in any category **C**. Show

(i) if f and g are monos (epis), so is h. (2)

/ • •	\ · c	7	•	•	e (0	`
(11	\ 1±	h	10 0 0000 00	10	+ (•,	- 1
111	/ 11	11	15 a mono, so	15	1. (
(/) -	_	1

- (iii) if h is an epi, so is g. (2)
- (iv) if h is a mono, g doesn't have to be monic. Give a counterex- (2) ample.
- (b) Let (P, \leq) be a poset and consider the associated poset category (3) **P** with $x \in P$ as objects. Show that every morphism in **P** is both epic and monic. What are the isos? Conclude that an arrow which is epi and mono doesn't have to be an iso.

We say that a functor $F: \mathbf{C} \to \mathbf{D}$ preserves isomorphisms (monos, epis) if for all isomorphisms (monos, epis) $f: X \to Y$ in **C** its image F(f) is an iso (mono, epi) in **D**.

- (c) Show that every functor preserves isomorphisms. (2)
- (d) Let **C** be a category and A an object in **C**. Show that the hom-(2) functor $\operatorname{Hom}_{\mathbf{C}}(A, -): \mathbf{C} \to \operatorname{\mathbf{Sets}}$ preserves monos.

References